Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Year range
Alexandria Engineering Journal ; 61(12):11787-11802, 2022.
Article in English | Web of Science | ID: covidwho-1914097


The fractional derivative is an advanced category of mathematics for real-life problems. This work focus on the investigation of 2nd wave of the Corona virus in India. We develop a time fractional order COVID-19 model with effects of the disease which consist of a system of fractional differential equations. The fractional-order COVID-19 model is investigated with AtanganaBaleanu-Caputo fractional derivative. Also, the deterministic mathematical model for the Omicron effect is investigated with different fractional parameters. The fractional-order system is analyzed qualitatively as well as verified sensitivity analysis. Fixed point theory is used to prove the existence and uniqueness of the fractional-order model. Analyzed the model locally as well as globally using Lyapunov first and second derivative. Boundedness and positive unique solutions are verified for the fractional-order model of infection of disease. The concept of fixed point theory is used to interrogate the problem and confine the solution. Solutions are derived to investigate the influence of fractional operator which shows the impact of the disease on society. Simulation has been made to understand the behavior of the virus.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University This is an open access article under the CC BY license ( 4.0/).

PUBMED; 2020.
Preprint in English | PUBMED | ID: ppcovidwho-292827


The recent outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has led to a worldwide pandemic. One week after initial symptoms develop, a subset of patients progresses to severe disease, with high mortality and limited treatment options. To design novel interventions aimed at preventing spread of the virus and reducing progression to severe disease, detailed knowledge of the cell types and regulating factors driving cellular entry is urgently needed. Here we assess the expression patterns in genes required for COVID-19 entry into cells and replication, and their regulation by genetic, epigenetic and environmental factors, throughout the respiratory tract using samples collected from the upper (nasal) and lower airways (bronchi). Matched samples from the upper and lower airways show a clear increased expression of these genes in the nose compared to the bronchi and parenchyma. Cellular deconvolution indicates a clear association of these genes with the proportion of secretory epithelial cells. Smoking status was found to increase the majority of COVID-19 related genes including ACE2 and TMPRSS2 but only in the lower airways, which was associated with a significant increase in the predicted proportion of goblet cells in bronchial samples of current smokers. Both acute and second hand smoke were found to increase ACE2 expression in the bronchus. Inhaled corticosteroids decrease ACE2 expression in the lower airways. No significant effect of genetics on ACE2 expression was observed, but a strong association of DNA- methylation with ACE2 and TMPRSS2- mRNA expression was identified in the bronchus.