Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Disease Surveillance ; 35(12):1068-1072, 2020.
Article | WHO COVID | ID: covidwho-1190519

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a natural emerging virus, with rapid virus replication, wide cell tropism, and strong survival ability Its epidemic characteristics are similar to those of influenza virus Asymptomatic infections are widespread in a covert way, and the virus has adapted to human population, making it difficult to control the transmission The global epidemic in 2020/2021 may further deteriorate before the SARS-CoV-2 vaccines are widely applied and show protective effectiveness, and China will still face the risk of continuous overseas multi-channel import and local outbreaks or recurrence of the epidemic Therefore, it is necessary to carry out further surveillance about the prevalence and infection of SARS-CoV-2 in the population and the corresponding environment of the high-risk areas in China, and establish a national super mobile SARS-CoV-2 detection network laboratory for performing ultra-large-scale testing tasks;implement differentiated vaccination strategies and closely follow up and monitor the effectiveness and efficiency of vaccination;and continue to strengthen effective public health measures such as wearing masks, washing hands frequently, keeping social distances, opening windows frequently, and reducing gatherings The coronavirus disease 2019 (COVID-19) epidemic warns us once again that the continuous emergence of new infectious diseases caused by unknown pathogens of wild animal origin has become the new normal status It is necessary to systematically carry out unknown microbial discovery and reverse pathogenic etiology research in a prospective manner, and actively defend against emerging infectious diseases in the future

2.
EClinicalMedicine ; 25: 100478, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1047557

ABSTRACT

Background: The outbreak of a new coronavirus (SARS-CoV-2) poses a great challenge to global public health. New and effective intervention strategies are urgently needed to combat the disease. Methods: We conducted an open-label, non-randomized, clinical trial involving moderate COVID-19 patients according to study protocol. Patients were assigned in a 1:2 ratio to receive either aerosol inhalation treatment with IFN-κ and TFF2, every 48 h for three consecutive dosages, in addition to standard treatment (experimental group), or standard treatment alone (control group). The end point was the time to discharge from the hospital. This study is registered with chictr.org.cn, ChiCTR2000030262. Findings: A total of thirty-three eligible COVID-19 patients were enrolled from February 1, 2020 to April 6, 2020, eleven were assigned to the IFN-κ plus TFF2 group, and twenty-two to the control group. Safety and efficacy were evaluated for both groups. No treatment-associated severe adverse effects (SAE) were observed in the group treated with aerosol inhalation of IFN-κ plus TFF2, and no significant differences in the safety evaluations were observed between experimental and control groups. CT imaging was performed in all patients with the median improvement time of 5.0 days (IQR 3.0-9.0) in the experimental group versus 8.5 days (IQR 3.0-17.0) in the control group (p<0.05). In addition, the experimental group had a significant shorten median time in cough relief (4.5 days [IQR 2.0-7.0]) than the control group did (10.0 days [IQR 6.0-21.0])(p<0.005), in viral RNA reversion of 6.0 days (IQR 2.0-13.0) in the experimental group vs 9.5 days (IQR 3.0-23.0) in the control group (p < 0.05), and in the median hospitalization stays of 12.0 days (IQR 7.0-20.0) in the experimental group vs 15.0 days (IQR 10.0-25.0) in the control group (p<0.001), respectively. Interpretation: Aerosol inhalation of IFN-κ plus TFF2 is a safe treatment and is likely to significantly facilitate clinical improvement, including cough relief, CT imaging improvement, and viral RNA reversion, thereby achieves an early release from hospitalization. These data support to explore a scale-up trial with IFN-κ plus TFF2. Funding: National Major Project for Control and Prevention of Infectious Disease in China, Shanghai Science and Technology Commission, Shanghai Municipal Health Commission.

3.
J Infect Dis ; 2020 Nov 17.
Article in English | MEDLINE | ID: covidwho-944332

ABSTRACT

BACKGROUND: The immune protective mechanisms during SARS-CoV-2 infection remain to be deciphered for the development of an effective intervention approach. METHODS: We examined early responses of IL-37, a powerful anti-inflammatory cytokine, in 254 SARS-CoV-2-infected patients prior to any clinical intervention and determined its correlation with clinical prognosis. RESULTS: Our results demonstrated that SARS-CoV-2 infection causes elevation of plasma IL-37. Higher early IL-37 responses correlated with earlier viral RNA negative conversion, chest CT image improvement and cough relief, consequently resulted in earlier hospital discharge. Further assays showed that higher IL-37 was associated with lower IL-6 and IL-8 and higher IFN-α and facilitated biochemical homeostasis. Low IL-37 responses predicted severe clinical prognosis in combination with IL-8 and CRP. In addition, we observed that IL-37 administration was able to attenuate lung inflammation and alleviate respiratory tissue damage in human angiotensin-converting enzyme 2 (hACE2)-transgenic mice infected with SARS-CoV-2. CONCLUSIONS: Overall, we found that IL-37 plays a protective role by antagonizing inflammatory responses while retaining type I IFN, thereby maintaining the functionalities of vital organs. IL-37, IL-8 and CRP might be formulated as a precise prediction model for screening severe clinical cases and have good value in clinical practice.

4.
EClinicalMedicine ; 27: 100547, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-898762

ABSTRACT

Background: Epidemic outbreaks caused by SARS-CoV-2 are worsening around the world, and there are no target drugs to treat COVID-19. IFN-κ inhibits the replication of SARS-CoV-2; and TFF2 is a small secreted polypeptide that promotes the repair of mucosal injury and reduces the inflammatory responses. We used the synergistic effect of both proteins to treat COVID-19. Methods: We conducted an open-label, randomized, clinical trial involving patients with moderate COVID-19. Patients were assigned in a 1:1 ratio to receive either aerosol inhalation treatment with IFN-κ and TFF2 every 24 h for six consecutive dosages in addition to standard care (experimental group) or standard care alone (control group). The primary endpoint was the time until a viral RNA negative conversion for SARS-CoV-2 in all clinical samples. The secondary clinical endpoint was the time of CT imaging improvement. Data analysis was performed per protocol. This study was registered with chictr.org.cn, ChiCTR2000030262. Findings: Between March 23 and May 23 of 2020, 86 COVID-19 patients with symptoms of moderate illness were recruited, and 6 patients were excluded due to not matching the inclusion criteria (patients with pneumonia through chest radiography). Among the remaining 80 patients, 40 patients were assigned to experimental group, and the others were assigned to control group to only receive standard care. Efficacy and safety were evaluated for both groups. The time of viral RNA negative conversion in experimental group (Mean, 3·80 days, 95% CI 2·07-5·53), was significantly shorter than that in control group (7·40 days, 95% CI 4·57 to 10·23) (p = 0.031), and difference between means was 3·60 days. The percentage of patients in experimental group with reversion to negative viral RNA was significantly increased compared with control group on all sampling days (every day during the 12-day observation period) (p = 0·037). For the secondary endpoint, the experimental group had a significantly shorter time until improvement was seen by CT (Mean 6·21 days, N = 38/40, 95% CI 5·11-7·31) than that in control group (8·76 days, N = 34/40, 95% CI 7·57-9·96) (p = 0.002), and difference between means was 2·55 days. No discomfort or complications during aerosol inhalation were reported to the nurses by any experimental patients. Interpretation: In conclusion, we found that aerosol inhalation of IFN-κ plus TFF2 in combination with standard care is safe and superior to standard care alone in shortening the time up to viral RNA negative conversion in all clinical samples. In addition, the patients in experimental group had a significantly shortened CT imaging improvement time than those in control group. This study suggested that this combination treatment is able to facilitate clinical improvement (negative for virus, improvement by CT, reduced hospitalization stay) and thereby result in an early release from the hospital. These data support the need for exploration with a large-scale trial of IFN-κ plus TFF2 to treat COVID-19. Funding: Funding was provided by the National Natural Science Foundation of China, National Major Project for Control and Prevention of Infectious Disease in China, Shanghai Science and Technology Commission, Shanghai Municipal Health Commission.

5.
Biosens Bioelectron ; 171: 112685, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-891295

ABSTRACT

The spread of SARS-CoV-2 virus in the ongoing global pandemic has led to infections of millions of people and losses of many lives. The rapid, accurate and convenient SARS-CoV-2 virus detection is crucial for controlling and stopping the pandemic. Diagnosis of patients in the early stage infection are so far limited to viral nucleic acid or antigen detection in human nasopharyngeal swab or saliva samples. Here we developed a method for rapid and direct optical measurement of SARS-CoV-2 virus particles in one step nearly without any sample preparation using a spike protein specific nanoplasmonic resonance sensor. As low as 370 vp/mL were detected in one step within 15 min and the virus concentration can be quantified linearly in the range of 0 to 107 vp/mL. Measurements shown on both generic microplate reader and a handheld smartphone connected device suggest that our low-cost and rapid detection method may be adopted quickly under both regular clinical environment and resource-limited settings.


Subject(s)
Betacoronavirus/isolation & purification , Biosensing Techniques/instrumentation , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Point-of-Care Testing , Virion/isolation & purification , Antibodies, Immobilized/chemistry , Biosensing Techniques/economics , Clinical Laboratory Techniques/economics , Coronavirus Infections/economics , Equipment Design , Humans , Limit of Detection , Models, Molecular , Pandemics , Spike Glycoprotein, Coronavirus/analysis , Time Factors
7.
Preprint | SSRN | ID: ppcovidwho-728

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spreads rapidly and has attrac

8.
J Transl Med ; 18(1): 345, 2020 09 05.
Article in English | MEDLINE | ID: covidwho-745680

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spreads rapidly and has attracted worldwide attention. METHODS: To improve the forecast accuracy and investigate the spread of SARS-CoV-2, we constructed four mathematical models to numerically estimate the spread of SARS-CoV-2 and the efficacy of eradication strategies. RESULTS: Using the Susceptible-Exposed-Infected-Removed (SEIR) model, and including measures such as city closures and extended leave policies implemented by the Chinese government that effectively reduced the ß value, we estimated that the ß value and basic transmission number, R0, of SARS-CoV-2 was 0.476/6.66 in Wuhan, 0.359/5.03 in Korea, and 0.400/5.60 in Italy. Considering medicine and vaccines, an advanced model demonstrated that the emergence of vaccines would greatly slow the spread of the virus. Our model predicted that 100,000 people would become infected assuming that the isolation rate α in Wuhan was 0.30. If quarantine measures were taken from March 10, 2020, and the quarantine rate of α was also 0.3, then the final number of infected people was predicted to be 11,426 in South Korea and 147,142 in Italy. CONCLUSIONS: Our mathematical models indicate that SARS-CoV-2 eradication depends on systematic planning, effective hospital isolation, and SARS-CoV-2 vaccination, and some measures including city closures and leave policies should be implemented to ensure SARS-CoV-2 eradication.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Disease Eradication , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , China/epidemiology , Coronavirus Infections/epidemiology , Epidemics/prevention & control , Government , Humans , Italy/epidemiology , Pneumonia, Viral/epidemiology , Quarantine , Republic of Korea/epidemiology , Vaccination
9.
Cell Rep ; 32(3): 107918, 2020 07 21.
Article in English | MEDLINE | ID: covidwho-625076

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a worldwide threat to humans, and neutralizing antibodies have therapeutic potential. We have purified more than 1,000 memory B cells specific to SARS-CoV-2 S1 or its RBD (receptor binding domain) and obtain 729 paired heavy- and light-chain fragments. Among these, 178 antibodies test positive for antigen binding, and the majority of the top 17 binders with EC50 below 1 nM are RBD binders. Furthermore, we identify 11 neutralizing antibodies, eight of which show IC50 within 10 nM, and the best one, 414-1, with IC50 of 1.75 nM. Through epitope mapping, we find three main epitopes in RBD recognized by these antibodies, and epitope-B antibody 553-15 could substantially enhance the neutralizing abilities of most of the other antibodies. We also find that 515-5 could cross neutralize the SARS-CoV pseudovirus. Altogether, our study provides 11 potent human neutralizing antibodies for COVID-19 as therapeutic candidates.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/therapeutic use , B-Lymphocytes/immunology , Coronavirus Infections/therapy , Epitope Mapping , Epitopes/immunology , Humans , Immunologic Memory/immunology , Neutralization Tests , Pandemics , Pneumonia, Viral/therapy , Protein Domains/immunology
10.
Cell Mol Immunol ; 17(6): 621-630, 2020 06.
Article in English | MEDLINE | ID: covidwho-262594

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the novel human coronavirus SARS-CoV-2, is currently a major threat to public health worldwide. The viral spike protein binds the host receptor angiotensin-converting enzyme 2 (ACE2) via the receptor-binding domain (RBD), and thus is believed to be a major target to block viral entry. Both SARS-CoV-2 and SARS-CoV share this mechanism. Here we functionally analyzed the key amino acid residues located within receptor binding motif of RBD that may interact with human ACE2 and available neutralizing antibodies. The in vivo experiments showed that immunization with either the SARS-CoV RBD or SARS-CoV-2 RBD was able to induce strong clade-specific neutralizing antibodies in mice; however, the cross-neutralizing activity was much weaker, indicating that there are distinct antigenic features in the RBDs of the two viruses. This finding was confirmed with the available neutralizing monoclonal antibodies against SARS-CoV or SARS-CoV-2. It is worth noting that a newly developed SARS-CoV-2 human antibody, HA001, was able to neutralize SARS-CoV-2, but failed to recognize SARS-CoV. Moreover, the potential epitope residues of HA001 were identified as A475 and F486 in the SARS-CoV-2 RBD, representing new binding sites for neutralizing antibodies. Overall, our study has revealed the presence of different key epitopes between SARS-CoV and SARS-CoV-2, which indicates the necessity to develop new prophylactic vaccine and antibody drugs for specific control of the COVID-19 pandemic although the available agents obtained from the SARS-CoV study are unneglectable.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Peptidyl-Dipeptidase A/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Motifs , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/metabolism , Betacoronavirus/metabolism , Betacoronavirus/physiology , Binding Sites , Cross Reactions , Epitopes , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Protein Interaction Domains and Motifs/immunology , Receptors, Virus/metabolism , SARS Virus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization
12.
Journal of Bio-X Research ; Latest Articles, 2020.
Article | WHO COVID | ID: covidwho-10224
14.
Ann Transl Med ; 8(3): 47, 2020 Feb.
Article in English | MEDLINE | ID: covidwho-4170

ABSTRACT

Since December 2019, there has been an outbreak of novel coronavirus (2019-nCoV) infection in China. Two cases of neonates with positive 2019-nCoV tests have been reported. Due to the immature immune system and the possibility of vertical transmission from mother to infant, neonates have become a high-risk group susceptible to 2019-nCoV, which emphasize a close cooperation from both perinatal and neonatal pediatrics. In neonatal intensive care unit (NICU), to prevent and control infection, there should be practical measures to ensure the optimal management of children potentially to be infected. According to the latest 2019-nCoV national management plan and the actual situation, the Chinese Neonatal 2019-nCoV expert working Group has put forward measures on the prevention and control of neonatal 2019-nCoV infection.

SELECTION OF CITATIONS
SEARCH DETAIL