Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Infect Dis Poverty ; 10(1): 140, 2021 Dec 28.
Article in English | MEDLINE | ID: covidwho-1639437

ABSTRACT

BACKGROUND: Reaching optimal vaccination rates is an essential public health strategy to control the coronavirus disease 2019 (COVID-19) pandemic. This study aimed to simulate the optimal vaccination strategy to control the disease by developing an age-specific model based on the current transmission patterns of COVID-19 in Wuhan City, China. METHODS: We collected two indicators of COVID-19, including illness onset data and age of confirmed case in Wuhan City, from December 2, 2019, to March 16, 2020. The reported cases were divided into four age groups: group 1, ≤ 14 years old; group 2, 15 to 44 years old; group 3, 44 to 64 years old; and group 4, ≥ 65 years old. An age-specific susceptible-exposed-symptomatic-asymptomatic-recovered/removed model was developed to estimate the transmissibility and simulate the optimal vaccination strategy. The effective reproduction number (Reff) was used to estimate the transmission interaction in different age groups. RESULTS: A total of 47 722 new cases were reported in Wuhan City from December 2, 2019, to March 16, 2020. Before the travel ban of Wuhan City, the highest transmissibility was observed among age group 2 (Reff = 4.28), followed by group 2 to 3 (Reff = 2.61), and group 2 to 4 (Reff = 1.69). China should vaccinate at least 85% of the total population to interrupt transmission. The priority for controlling transmission should be to vaccinate 5% to 8% of individuals in age group 2 per day (ultimately vaccinated 90% of age group 2), followed by 10% of age group 3 per day (ultimately vaccinated 90% age group 3). However, the optimal vaccination strategy for reducing the disease severity identified individuals ≥ 65 years old as a priority group, followed by those 45-64 years old. CONCLUSIONS: Approximately 85% of the total population (nearly 1.2 billion people) should be vaccinated to build an immune barrier in China to safely consider removing border restrictions. Based on these results, we concluded that 90% of adults aged 15-64 years should first be vaccinated to prevent transmission in China.


Subject(s)
COVID-19 , Adolescent , Adult , Aged , China , Cities , Humans , Middle Aged , SARS-CoV-2 , Vaccination , Young Adult
2.
Infect Dis Poverty ; 10(1): 53, 2021 Apr 19.
Article in English | MEDLINE | ID: covidwho-1191906

ABSTRACT

BACKGROUND: Novel coronavirus disease 2019 (COVID-19) causes an immense disease burden. Although public health countermeasures effectively controlled the epidemic in China, non-pharmaceutical interventions can neither be maintained indefinitely nor conveniently implemented globally. Vaccination is mainly used to prevent COVID-19, and most current antiviral treatment evaluations focus on clinical efficacy. Therefore, we conducted population-based simulations to assess antiviral treatment effectiveness among different age groups based on its clinical efficacy. METHODS: We collected COVID-19 data of Wuhan City from published literature and established a database (from 2 December 2019 to 16 March 2020). We developed an age-specific model to evaluate the effectiveness of antiviral treatment in patients with COVID-19. Efficacy was divided into three types: (1) viral activity reduction, reflected as transmission rate decrease [reduction was set as v (0-0.8) to simulate hypothetical antiviral treatments]; (2) reduction in the duration time from symptom onset to patient recovery/removal, reflected as a 1/γ decrease (reduction was set as 1-3 days to simulate hypothetical or real-life antiviral treatments, and the time of asymptomatic was reduced by the same proportion); (3) fatality rate reduction in severely ill patients (fc) [reduction (z) was set as 0.3 to simulate real-life antiviral treatments]. The population was divided into four age groups (groups 1, 2, 3 and 4), which included those aged ≤ 14; 15-44; 45-64; and ≥ 65 years, respectively. Evaluation indices were based on outbreak duration, cumulative number of cases, total attack rate (TAR), peak date, number of peak cases, and case fatality rate (f). RESULTS: Comparing the simulation results of combination and single medication therapy s, all four age groups showed better results with combination medication. When 1/γ = 2 and v = 0.4, age group 2 had the highest TAR reduction rate (98.48%, 56.01-0.85%). When 1/γ = 2, z = 0.3, and v = 0.1, age group 1 had the highest reduction rate of f (83.08%, 0.71-0.12%). CONCLUSIONS: Antiviral treatments are more effective in COVID-19 transmission control than in mortality reduction. Overall, antiviral treatments were more effective in younger age groups, while older age groups showed higher COVID-19 prevalence and mortality. Therefore, physicians should pay more attention to prevention of viral spread and patients deaths when providing antiviral treatments to patients of older age groups.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/drug effects , Adolescent , Age Factors , Aged , COVID-19/epidemiology , COVID-19/virology , China/epidemiology , Humans , Infectious Disease Incubation Period , Middle Aged , Models, Statistical , Young Adult
3.
Cell Res ; 31(1): 17-24, 2021 01.
Article in English | MEDLINE | ID: covidwho-953056

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic worldwide. Currently, however, no effective drug or vaccine is available to treat or prevent the resulting coronavirus disease 2019 (COVID-19). Here, we report our discovery of a promising anti-COVID-19 drug candidate, the lipoglycopeptide antibiotic dalbavancin, based on virtual screening of the FDA-approved peptide drug library combined with in vitro and in vivo functional antiviral assays. Our results showed that dalbavancin directly binds to human angiotensin-converting enzyme 2 (ACE2) with high affinity, thereby blocking its interaction with the SARS-CoV-2 spike protein. Furthermore, dalbavancin effectively prevents SARS-CoV-2 replication in Vero E6 cells with an EC50 of ~12 nM. In both mouse and rhesus macaque models, viral replication and histopathological injuries caused by SARS-CoV-2 infection are significantly inhibited by dalbavancin administration. Given its high safety and long plasma half-life (8-10 days) shown in previous clinical trials, our data indicate that dalbavancin is a promising anti-COVID-19 drug candidate.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Teicoplanin/analogs & derivatives , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Caco-2 Cells , Chlorocebus aethiops , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Protein Binding/drug effects , Teicoplanin/pharmacokinetics , Teicoplanin/pharmacology , Vero Cells
4.
Infect Dis Poverty ; 9(1): 117, 2020 Aug 26.
Article in English | MEDLINE | ID: covidwho-730583

ABSTRACT

BACKGROUND: The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, also called 2019-nCoV) causes different morbidity risks to individuals in different age groups. This study attempts to quantify the age-specific transmissibility using a mathematical model. METHODS: An epidemiological model with five compartments (susceptible-exposed-symptomatic-asymptomatic-recovered/removed [SEIAR]) was developed based on observed transmission features. Coronavirus disease 2019 (COVID-19) cases were divided into four age groups: group 1, those ≤ 14 years old; group 2, those 15 to 44 years old; group 3, those 45 to 64 years old; and group 4, those ≥ 65 years old. The model was initially based on cases (including imported cases and secondary cases) collected in Hunan Province from January 5 to February 19, 2020. Another dataset, from Jilin Province, was used to test the model. RESULTS: The age-specific SEIAR model fitted the data well in each age group (P < 0.001). In Hunan Province, the highest transmissibility was from age group 4 to 3 (median: ß43 = 7.71 × 10- 9; SAR43 = 3.86 × 10- 8), followed by group 3 to 4 (median: ß34 = 3.07 × 10- 9; SAR34 = 1.53 × 10- 8), group 2 to 2 (median: ß22 = 1.24 × 10- 9; SAR22 = 6.21 × 10- 9), and group 3 to 1 (median: ß31 = 4.10 × 10- 10; SAR31 = 2.08 × 10- 9). The lowest transmissibility was from age group 3 to 3 (median: ß33 = 1.64 × 10- 19; SAR33 = 8.19 × 10- 19), followed by group 4 to 4 (median: ß44 = 3.66 × 10- 17; SAR44 = 1.83 × 10- 16), group 3 to 2 (median: ß32 = 1.21 × 10- 16; SAR32 = 6.06 × 10- 16), and group 1 to 4 (median: ß14 = 7.20 × 10- 14; SAR14 = 3.60 × 10- 13). In Jilin Province, the highest transmissibility occurred from age group 4 to 4 (median: ß43 = 4.27 × 10- 8; SAR43 = 2.13 × 10- 7), followed by group 3 to 4 (median: ß34 = 1.81 × 10- 8; SAR34 = 9.03 × 10- 8). CONCLUSIONS: SARS-CoV-2 exhibits high transmissibility between middle-aged (45 to 64 years old) and elderly (≥ 65 years old) people. Children (≤ 14 years old) have very low susceptibility to COVID-19. This study will improve our understanding of the transmission feature of SARS-CoV-2 in different age groups and suggest the most prevention measures should be applied to middle-aged and elderly people.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Models, Statistical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Adolescent , Adult , Age Factors , Aged , Betacoronavirus/isolation & purification , COVID-19 , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL