Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Transbound Emerg Dis ; 2020 Jul 28.
Article in English | MEDLINE | ID: covidwho-690269

ABSTRACT

We investigated an outbreak of COVID-19 infection, which was traced back to a bathing pool at an entertainment venue, to explore the epidemiology of the outbreak, understand the transmissibility of the virus, and analyze the influencing factors. Contact investigation and management were conducted to identify potential cases. Epidemiological investigation was carried out to determine the epidemiological and demographic characteristics of the outbreak. We estimated the secondary attack rate (SAR), incubation time, and time-dependent reproductive number (Rt ), and explored the predisposing factors for cluster infection. The incubation time was 5.4 days and the serial interval (SI) was 4.4 days, with the rate of negative-valued SIs at 24.5%. The SAR at the bathing pool (3.3%) was relatively low due to its high temperature and humidity. The SAR was higher in the colleagues' cluster (20.5%) than in the family cluster (11.8%). Superspreaders had a longer isolation delay time (P=0.004). The Rt of the cluster decreased from the highest value of 3.88 on January 27, 2020 to 1.22 on February 6. Our findings suggest that the predisposing factors of the outbreak included close contact with an infected person, airtight and crowded spaces, temperature and humidity in the space, and untimely isolation of patients and quarantine of contacts at the early stage of transmission. Measures to reduce the risk of infection at these gatherings and subsequent tracking of close contacts were effective.

2.
Virol Sin ; 2020 Jul 21.
Article in English | MEDLINE | ID: covidwho-659402

ABSTRACT

We recently reported that inhibitors against human dihydroorotate dehydrogenase (DHODH) have broad-spectrum antiviral activities including their inhibitory efficacies on SARS-CoV-2 replication in infected cells. However, there are limited data from clinical studies to prove the application of DHODH inhibitors in Coronavirus disease 2019 (COVID-19) patients. In the present study, we evaluated Leflunomide, an approved DHODH inhibitor widely used as a modest immune regulator to treat autoimmune diseases, in treating COVID-19 disease with a small-scale of patients. Cases of 10 laboratory-confirmed COVID-19 patients of moderate type with obvious opacity in the lung were included. Five of the patients were treated with Leflunomide, and another five were treated as blank controls without a placebo. All the patients accepted standard supportive treatment for COVID-19. The patients given Leflunomide had a shorter viral shedding time (median of 5 days) than the controls (median of 11 days, P = 0.046). The patients given Leflunomide also showed a significant reduction in C-reactive protein levels, indicating that immunopathological inflammation was well controlled. No obvious adverse effects were observed in Leflunomide-treated patients, and they all discharged from the hospital faster than controls. This preliminary study on a small-scale compassionate use of Leflunomide provides clues for further understanding of Leflunomide as a potential antiviral drug against COVID-19.

3.
J Mol Cell Biol ; 2020 Jul 08.
Article in English | MEDLINE | ID: covidwho-637628

ABSTRACT

For patients with COVID-19 caused by SARS-CoV-2, the damages to multiple organs have been clinically observed. Since most of current investigations for virus-host interaction are based on cell level, there is an urgent demand to probe tissue-specific features associated with SARS-CoV-2 infection. Based on collected proteomic datasets from human lung, colon, kidney, liver and heart, we constructed a virus-receptor network, a virus-interaction network and a virus-perturbation network. In the tissue-specific networks associated with virus-host crosstalk, both common and different key hubs are revealed in diverse tissues. Ubiquitous hubs in multiple tissues such as BRD4 and RIPK1 would be promising drug targets to rescue multi-organ injury and deal with inflammation. Certain tissue-unique hubs such as REEP5 might mediate specific olfactory dysfunction. The present analysis implies that SARS-CoV-2 could affect multi-targets in diverse host tissues, and the treatment of COVID-19 would be a complex task.

4.
BMJ ; 369: m2195, 2020 06 10.
Article in English | MEDLINE | ID: covidwho-592014

ABSTRACT

OBJECTIVE: To examine the protective effects of appropriate personal protective equipment for frontline healthcare professionals who provided care for patients with coronavirus disease 2019 (covid-19). DESIGN: Cross sectional study. SETTING: Four hospitals in Wuhan, China. PARTICIPANTS: 420 healthcare professionals (116 doctors and 304 nurses) who were deployed to Wuhan by two affiliated hospitals of Sun Yat-sen University and Nanfang Hospital of Southern Medical University for 6-8 weeks from 24 January to 7 April 2020. These study participants were provided with appropriate personal protective equipment to deliver healthcare to patients admitted to hospital with covid-19 and were involved in aerosol generating procedures. 77 healthcare professionals with no exposure history to covid-19 and 80 patients who had recovered from covid-19 were recruited to verify the accuracy of antibody testing. MAIN OUTCOME MEASURES: Covid-19 related symptoms (fever, cough, and dyspnoea) and evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, defined as a positive test for virus specific nucleic acids in nasopharyngeal swabs, or a positive test for IgM or IgG antibodies in the serum samples. RESULTS: The average age of study participants was 35.8 years and 68.1% (286/420) were women. These study participants worked 4-6 hour shifts for an average of 5.4 days a week; they worked an average of 16.2 hours each week in intensive care units. All 420 study participants had direct contact with patients with covid-19 and performed at least one aerosol generating procedure. During the deployment period in Wuhan, none of the study participants reported covid-19 related symptoms. When the participants returned home, they all tested negative for SARS-CoV-2 specific nucleic acids and IgM or IgG antibodies (95% confidence interval 0.0 to 0.7%). CONCLUSION: Before a safe and effective vaccine becomes available, healthcare professionals remain susceptible to covid-19. Despite being at high risk of exposure, study participants were appropriately protected and did not contract infection or develop protective immunity against SARS-CoV-2. Healthcare systems must give priority to the procurement and distribution of personal protective equipment, and provide adequate training to healthcare professionals in its use.


Subject(s)
Coronavirus Infections/prevention & control , Health Personnel , Infection Control/instrumentation , Pandemics/prevention & control , Personal Protective Equipment/supply & distribution , Pneumonia, Viral/prevention & control , Adult , Betacoronavirus , China , Coronavirus Infections/diagnosis , Cross-Sectional Studies , Female , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Intensive Care Units , Male , Middle Aged , Occupational Exposure/prevention & control , Pneumonia, Viral/diagnosis
5.
Sci Total Environ ; 739: 140000, 2020 Jun 05.
Article in English | MEDLINE | ID: covidwho-548125

ABSTRACT

Wuhan was the first city to adopt the lockdown measures to prevent COVID-19 spreading, which improved the air quality accordingly. This study investigated the variations in chemical compositions, source contributions, and regional transport of fine particles (PM2.5) during January 23-February 22 of 2020, compared with the same period in 2019. The average mass concentration of PM2.5 decreased from 72.9 µg m-3 (2019) to 45.9 µg m-3 (2020), by 27.0 µg m-3. It was predominantly contributed by the emission reduction (92.0%), retrieved from a random forest tree approach. The main chemical species of PM2.5 all decreased with the reductions ranging from 0.85 µg m-3 (chloride) to 9.86 µg m-3 (nitrate) (p < 0.01). Positive matrix factorization model indicated that the mass contributions of seven PM2.5 sources all decreased. However, their contribution percentages varied from -11.0% (industrial processes) to 8.70% (secondary inorganic aerosol). Source contributions of PM2.5 transported from potential geographical regions showed reductions with mean values ranging from 0.22 to 4.36 µg m-3. However, increased contributions of firework burning, secondary inorganic aerosol, road dust, and vehicle emissions from transboundary transport were observed. This study highlighted the complex and nonlinear response of chemical compositions and sources of PM2.5 to air pollution control measures, suggesting the importance of regional-joint control.

6.
Emerg Microbes Infect ; 9(1): 1259-1268, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-342833

ABSTRACT

Quantitative real time PCR (RT-PCR) is widely used as the gold standard for clinical detection of SARS-CoV-2. However, due to the low viral load specimens and the limitations of RT-PCR, significant numbers of false negative reports are inevitable, which results in failure to timely diagnose, cut off transmission, and assess discharge criteria. To improve this situation, an optimized droplet digital PCR (ddPCR) was used for detection of SARS-CoV-2, which showed that the limit of detection of ddPCR is significantly lower than that of RT-PCR. We further explored the feasibility of ddPCR to detect SARS-CoV-2 RNA from 77 patients, and compared with RT-PCR in terms of the diagnostic accuracy based on the results of follow-up survey. 26 patients of COVID-19 with negative RT-PCR reports were reported as positive by ddPCR. The sensitivity, specificity, PPV, NPV, negative likelihood ratio (NLR) and accuracy were improved from 40% (95% CI: 27-55%), 100% (95% CI: 54-100%), 100%, 16% (95% CI: 13-19%), 0.6 (95% CI: 0.48-0.75) and 47% (95% CI: 33-60%) for RT-PCR to 94% (95% CI: 83-99%), 100% (95% CI: 48-100%), 100%, 63% (95% CI: 36-83%), 0.06 (95% CI: 0.02-0.18), and 95% (95% CI: 84-99%) for ddPCR, respectively. Moreover, 6/14 (42.9%) convalescents were detected as positive by ddPCR at 5-12 days post discharge. Overall, ddPCR shows superiority for clinical diagnosis of SARS-CoV-2 to reduce the false negative reports, which could be a powerful complement to the RT-PCR.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Real-Time Polymerase Chain Reaction/methods , False Negative Reactions , Humans , Limit of Detection , Pandemics , RNA, Viral/genetics , Viral Load/methods
7.
IEEE Rev Biomed Eng ; PP2020 May 11.
Article in English | MEDLINE | ID: covidwho-248704

ABSTRACT

Coronavirus disease 2019 (COVID-19) has emerged as a pandemic with serious clinical manifestations including death. A pandemic at the large-scale like COVID-19 places extraordinary demands on the world's health systems, dramatically devastates vulnerable populations, and critically threatens the global communities in an unprecedented way. While tremendous efforts at the frontline are placed on detecting the virus, providing treatments and developing vaccines, it is also critically important to examine the technologies and systems for tackling disease emergence, arresting its spread and especially the strategy for diseases prevention. The objective of this article is to review enabling technologies and systems with various application scenarios for handling the COVID-19 crisis. The article will focus specifically on 1) wearable devices suitable for monitoring the populations at risk and those in quarantine, both for evaluating the health status of caregivers and management personnel, and for facilitating triage processes for admission to hospitals; 2) unobtrusive sensing systems for detecting the disease and for monitoring patients with relatively mild symptoms whose clinical situation could suddenly worsen in improvised hospitals; and 3) telehealth technologies for the remote monitoring and diagnosis of COVID-19 and related diseases. Finally, further challenges and opportunities for future directions of development are highlighted.

8.
Nature ; 582(7813): 557-560, 2020 06.
Article in English | MEDLINE | ID: covidwho-137432

ABSTRACT

The ongoing outbreak of coronavirus disease 2019 (COVID-19) has spread rapidly on a global scale. Although it is clear that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted through human respiratory droplets and direct contact, the potential for aerosol transmission is poorly understood1-3. Here we investigated the aerodynamic nature of SARS-CoV-2 by measuring viral RNA in aerosols in different areas of two Wuhan hospitals during the outbreak of COVID-19 in February and March 2020. The concentration of SARS-CoV-2 RNA in aerosols that was detected in isolation wards and ventilated patient rooms was very low, but it was higher in the toilet areas used by the patients. Levels of airborne SARS-CoV-2 RNA in the most public areas was undetectable, except in two areas that were prone to crowding; this increase was possibly due to individuals infected with SARS-CoV-2 in the crowd. We found that some medical staff areas initially had high concentrations of viral RNA with aerosol size distributions that showed peaks in the submicrometre and/or supermicrometre regions; however, these levels were reduced to undetectable levels after implementation of rigorous sanitization procedures. Although we have not established the infectivity of the virus detected in these hospital areas, we propose that SARS-CoV-2 may have the potential to be transmitted through aerosols. Our results indicate that room ventilation, open space, sanitization of protective apparel, and proper use and disinfection of toilet areas can effectively limit the concentration of SARS-CoV-2 RNA in aerosols. Future work should explore the infectivity of aerosolized virus.


Subject(s)
Aerosols/analysis , Aerosols/chemistry , Bathroom Equipment , Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Hospitals , Pneumonia, Viral/virology , Workplace , Betacoronavirus/genetics , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Crowding , Disinfection , Humans , Intensive Care Units , Masks , Medical Staff , Pandemics/prevention & control , Patients/statistics & numerical data , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , RNA, Viral/analysis , Social Isolation , Ventilation
10.
Emerg Microbes Infect ; 9(1): 313-319, 2020.
Article in English | MEDLINE | ID: covidwho-337

ABSTRACT

From December 2019, an outbreak of unusual pneumonia was reported in Wuhan with many cases linked to Huanan Seafood Market that sells seafood as well as live exotic animals. We investigated two patients who developed acute respiratory syndromes after independent contact history with this market. The two patients shared common clinical features including fever, cough, and multiple ground-glass opacities in the bilateral lung field with patchy infiltration. Here, we highlight the use of a low-input metagenomic next-generation sequencing (mNGS) approach on RNA extracted from bronchoalveolar lavage fluid (BALF). It rapidly identified a novel coronavirus (named 2019-nCoV according to World Health Organization announcement) which was the sole pathogens in the sample with very high abundance level (1.5% and 0.62% of total RNA sequenced). The entire viral genome is 29,881 nt in length (GenBank MN988668 and MN988669, Sequence Read Archive database Bioproject accession PRJNA601736) and is classified into ß-coronavirus genus. Phylogenetic analysis indicates that 2019-nCoV is close to coronaviruses (CoVs) circulating in Rhinolophus (Horseshoe bats), such as 98.7% nucleotide identity to partial RdRp gene of bat coronavirus strain BtCoV/4991 (GenBank KP876546, 370 nt sequence of RdRp and lack of other genome sequence) and 87.9% nucleotide identity to bat coronavirus strain bat-SL-CoVZC45 and bat-SL-CoVZXC21. Evolutionary analysis based on ORF1a/1b, S, and N genes also suggests 2019-nCoV is more likely a novel CoV independently introduced from animals to humans.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Disease Outbreaks , Pneumonia, Viral/epidemiology , Adult , China , Female , Genome, Viral , Humans , Male , Phylogeny , RNA, Viral/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL