Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Year range
1.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-324519

ABSTRACT

Since the outbreak of 2019 novel coronavirus (2019-nCoV) at the hardest-hit city of Wuhan, the fast-moving spread has killed over three hundred people and infected more than ten thousands in China1. There are more than one hundred cases outside of China, affecting a dozen of countries globally2. The genome sequence of 2019-nCoV has been reported and fast diagnostic kits, effective treatment as well as preventive vaccines are rapidly being developed3. Initial fast-growing confirmed cases triggered lock-down of Wuhan as well as nearby cities in Hubei Province. Mathematical models have been proposed by scientists around the world to project the numbers of infected cases in the coming days 4,5. However, major factors such as transportation and cultural customs have not been weighed enough. Our model is not set out for precise prediction of the number of infected cases, rather, it is meant for a glance of the dynamics under a public epidemic emergency situation and of different contributing factors. We hope that our model and simulation would provide more insights and perspective information to public health authorities around the globe for better informed prevention and containment solution.

2.
SSRN; 2020.
Preprint | SSRN | ID: ppcovidwho-577

ABSTRACT

Background: Various forms of model have been applied to predict the trend of the epidemic since the outbreak of COVID-19 at the hardest-hit city of Wuhan. br b

3.
Quant Biol ; 8(3): 238-244, 2020.
Article in English | MEDLINE | ID: covidwho-754125

ABSTRACT

BACKGROUND: Various models have been applied to predict the trend of the epidemic since the outbreak of COVID-19. METHODS: In this study, we designed a dynamic graph model, not for precisely predicting the number of infected cases, but for a glance of the dynamics under a public epidemic emergency situation and of different contributing factors. RESULTS: We demonstrated the impact of asymptomatic transmission in this outbreak and showed the effectiveness of city lockdown to halt virus spread within a city. We further illustrated that sudden emergence of a large number of cases could overwhelm the city medical system, and external medical aids are critical to not only containing the further spread of the virus but also reducing fatality. CONCLUSION: Our model simulation showed that highly populated modern cities are particularly vulnerable and lessons learned in China could facilitate other countries to plan the proactive and decisive actions. We shall pay close attention to the asymptomatic transmission being suggested by rapidly accumulating evidence as dramatic changes in quarantine protocol are required to contain SARS-CoV-2 from spreading globally. SUPPLEMENTARY MATERIALS: The supplementary materials can be found online with this article at 10.1007/s40484-020-0215-4.

SELECTION OF CITATIONS
SEARCH DETAIL