Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Journal of Hazardous Materials ; : 130177, 2022.
Article in English | ScienceDirect | ID: covidwho-2069326

ABSTRACT

Disinfection plays an essential role in waterborne pathogen control and disease prevention, especially during the COVID-19 pandemic. Catalyst-free solar light/periodate (PI) system has recently presented great potential in water disinfection, whereas the in-depth chemical and microbiological mechanisms for efficient bacterial inactivation remain unclear. Our work delineated firstly the critical role of singlet oxygen, instead of reported hydroxyl radicals and superoxide radicals, in dominating bacterial inactivation by the PI/simulated sunlight (SSL) system. Multi-evidence demonstrated the prominent disinfection performance of this system for Staphylococcus aureus in terms of culturability (> 6 logs CFU), cellular integrity, and metabolic activity. Particularly, the excellent intracellular DNA removal (> 95%) indicated that PI/SSL system may function as a selective disinfection strategy to diminish bacterial culturability without damaging the cell membrane. The PI/SSL system could also effectively inhibit bacterial regrowth for > 5 days and horizontal gene transfer between E. coli genera. Nontargeted metabolomic analysis suggested that PI/SSL system inactivated bacteria by triggering the accumulation of intracellular reactive oxygen species and the depletion of reduced glutathione. Additionally, the PI/SSL system could accomplish simultaneous micropollutant removal and bacterial inactivation, suggesting its versatility in water decontamination. Overall, this study deciphers more comprehensive antibacterial mechanisms of this environmentally friendly disinfection system, facilitating the technical development and application of the selective disinfection strategy in environmental pathogen control.

2.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4765-4777, 2022 Sep.
Article in Chinese | MEDLINE | ID: covidwho-2030500

ABSTRACT

Epidemic diseases have caused huge harm to the society. Traditional Chinese medicine(TCM) has made great contributions to the prevention and treatment of them. It is of great reference value for fighting diseases and developing drugs to explore the medication law and mechanism of TCM under TCM theory. In this study, the relationship between the TCM theory of cold pestilence and modern epidemic diseases was investigated. Particularly, the the relationship of coronavirus disease 2019(COVID-19), severe acute respiratory syndrome(SARS), and influenza A(H1 N1) with the cold pestilence was identified and analyzed. The roles of TCM theory of cold pestilence in preventing and treating modern epidemic diseases were discussed. Then, through data mining and textual research, prescriptions for the treatment of cold pestilence were collected from major databases and relevant ancient books, and their medication laws were examined through analysis of high-frequency medicinals and medicinal pairs, association rules analysis, and cluster analysis. For example, the prescriptions with high confidence levels were identified: "Glycyrrhizae Radix et Rhizoma-Bupleuri Radix-Paeoniae Radix Alba" "Glycyrrhizae Radix et Rhizoma-Pinelliae Rhizoma-Bupleuri Radix", and TCM treatment methods with them were analyzed by clustering analysis to yield the medicinal combinations: "Zingiberis Rhizoma-Aconiti Lateralis Radix Praeparata-Ginseng Radix et Rhizoma" "Poria-Atractylodis Macrocephalae Rhizoma" "Cinnamomi Ramulus-Asari Radix et Rhizoma" "Citri Reticulatae Pericarpium-Perillae Folium" "Pinelliae Rhizoma-Magnoliae Officinalis Cortex-Atractylodis Rhizoma" "Paeoniae Radix Alba-Angelicae Sinensis Radix-Glycyrrhizae Radix et Rhizoma-Bupleuri Radix-Scutellariae Radix-Rhizoma Zingiberis Recens" "Ephedrae Herba-Armeniacae Semen Amarum-Gypsum Fibrosum" "Chuanxiong Rhizoma-Notopterygii Rhizoma et Radix-Angelicae Dahuricae Radix-Platycodonis Radix-Saposhnikoviae Radix". Then, according to the medication law for cold pestilence, the antiviral active components of medium-frequency and high-frequency medicinals were retrieved. It was found that these components exerted the antiviral effect by inhibiting virus replication, regulating virus proteins and antiviral signals, and suppressing protease activity. Based on network pharmacology, the mechanisms of the medicinals against severe acute respiratory syndrome coronavirus(SARS-CoV), 2019 novel coronavirus(2019-nCoV), and H1 N1 virus were explored. It was determined that the key targets were tumor necrosis factor(TNF), endothelial growth factor A(VEGFA), serum creatinine(SRC), epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), mitogen-activated protein kinase 14(MAPK14), and prostaglandin-endoperoxide synthase 2(PTGS2), which were involved the mitogen-activated protein kinase(MAPK) pathway, advanced glycation end-products(AGE)-receptor for AGE(RAGE) pathway, COVID-19 pathway, and mTOR pathway. This paper elucidated the medication law and mechanism of TCM for the prevention and treatment of epidemic diseases under the guidance of TCM theory of cold pestilence, in order to build a bridge between the theory and modern epidemic diseases and provide reference TCM methods for the prevention and treatment of modern epidemic diseases and ideas for the application of data mining to TCM treatment of modern diseases.


Subject(s)
Aconitum , Communicable Disease Control , Communicable Diseases , Drugs, Chinese Herbal , Epidemics , Medicine, Chinese Traditional , Pinellia , Antiviral Agents , COVID-19/epidemiology , Calcium Sulfate , Communicable Diseases/drug therapy , Communicable Diseases/microbiology , Communicable Diseases/virology , Creatinine , Cyclooxygenase 2 , Drugs, Chinese Herbal/therapeutic use , Endothelial Growth Factors , Epidemics/prevention & control , ErbB Receptors , Humans , Matrix Metalloproteinase 9 , Mitogen-Activated Protein Kinase 14 , SARS-CoV-2 , TOR Serine-Threonine Kinases , Tumor Necrosis Factors , COVID-19 Drug Treatment
3.
Nature ; 593(7859): 418-423, 2021 05.
Article in English | MEDLINE | ID: covidwho-1137788

ABSTRACT

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Subject(s)
Antiviral Agents/pharmacology , Clofazimine/pharmacology , Coronavirus/classification , Coronavirus/drug effects , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Biological Availability , Cell Fusion , Cell Line , Clofazimine/pharmacokinetics , Clofazimine/therapeutic use , Coronavirus/growth & development , Coronavirus/pathogenicity , Cricetinae , DNA Helicases/antagonists & inhibitors , Drug Synergism , Female , Humans , Life Cycle Stages/drug effects , Male , Mesocricetus , Pre-Exposure Prophylaxis , SARS-CoV-2/growth & development , Species Specificity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
4.
Sci Rep ; 11(1): 2933, 2021 02 03.
Article in English | MEDLINE | ID: covidwho-1062775

ABSTRACT

COVID-19 is a newly emerging infectious disease, which is generally susceptible to human beings and has caused huge losses to people's health. Acute respiratory distress syndrome (ARDS) is one of the common clinical manifestations of severe COVID-19 and it is also responsible for the current shortage of ventilators worldwide. This study aims to analyze the clinical characteristics of COVID-19 ARDS patients and establish a diagnostic system based on artificial intelligence (AI) method to predict the probability of ARDS in COVID-19 patients. We collected clinical data of 659 COVID-19 patients from 11 regions in China. The clinical characteristics of the ARDS group and no-ARDS group of COVID-19 patients were elaborately compared and both traditional machine learning algorithms and deep learning-based method were used to build the prediction models. Results indicated that the median age of ARDS patients was 56.5 years old, which was significantly older than those with non-ARDS by 7.5 years. Male and patients with BMI > 25 were more likely to develop ARDS. The clinical features of ARDS patients included cough (80.3%), polypnea (59.2%), lung consolidation (53.9%), secondary bacterial infection (30.3%), and comorbidities such as hypertension (48.7%). Abnormal biochemical indicators such as lymphocyte count, CK, NLR, AST, LDH, and CRP were all strongly related to the aggravation of ARDS. Furthermore, through various AI methods for modeling and prediction effect evaluation based on the above risk factors, decision tree achieved the best AUC, accuracy, sensitivity and specificity in identifying the mild patients who were easy to develop ARDS, which undoubtedly helped to deliver proper care and optimize use of limited resources.


Subject(s)
COVID-19/pathology , Machine Learning , Respiratory Distress Syndrome/diagnosis , Adult , Area Under Curve , Body Mass Index , COVID-19/complications , COVID-19/virology , Comorbidity , Female , Humans , Lymphocyte Count , Male , Middle Aged , ROC Curve , Respiratory Distress Syndrome/etiology , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Sex Factors
5.
Res Sq ; 2020 Oct 07.
Article in English | MEDLINE | ID: covidwho-869425

ABSTRACT

COVID-19 pandemic is the third zoonotic coronavirus (CoV) outbreak of the century after severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) since 2012. Treatment options for CoVs are largely lacking. Here, we show that clofazimine, an anti-leprosy drug with a favorable safety and pharmacokinetics profile, possesses pan-coronaviral inhibitory activity, and can antagonize SARS-CoV-2 replication in multiple in vitro systems, including the human embryonic stem cell-derived cardiomyocytes and ex vivo lung cultures. The FDA-approved molecule was found to inhibit multiple steps of viral replication, suggesting multiple underlying antiviral mechanisms. In a hamster model of SARS-CoV-2 pathogenesis, prophylactic or therapeutic administration of clofazimine significantly reduced viral load in the lung and fecal viral shedding, and also prevented cytokine storm associated with viral infection. Additionally, clofazimine exhibited synergy when administered with remdesivir. Since clofazimine is orally bioavailable and has a comparatively low manufacturing cost, it is an attractive clinical candidate for outpatient treatment and remdesivir-based combinatorial therapy for hospitalized COVID-19 patients, particularly in developing countries. Taken together, our data provide evidence that clofazimine may have a role in the control of the current pandemic SARS-CoV-2, endemic MERS-CoV in the Middle East, and, possibly most importantly, emerging CoVs of the future.

6.
Curr Med Sci ; 40(4): 614-617, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-696956

ABSTRACT

The novel Coronavirus SARS-CoV-2 caused an outbreak of pneumonia in Wuhan, Hubei province of China in January 2020. This study aims to investigate the effects of different temperature and time durations of virus inactivation on the results of PCR testing for SARS-CoV-2. Twelve patients at the Renmin Hospital of Wuhan University suspected of being infected with SARS-CoV-2 were selected on February 13, 2020 and throat swabs were taken. The swabs were stored at room temperature (20-25°C), then divided into aliquots and subjected to different temperature for different periods in order to inactivate the viruses (56°C for 30, 45, 60 min; 65, 70, 80°C for 10, 15, 20 min). Control aliquots were stored at room temperature for 60 min. Then all aliquots were tested in a real-time fluorescence PCR using primers against SARS-CoV-2. Regardless of inactivation temperature and time, 7 of 12 cases (58.3%) tested were positive for SARS-CoV-2 by PCR, and cycle threshold values were similar. These results suggest that virus inactivation parameters exert minimal influence on PCR test results. Inactivation at 65°C for 10 min may be sufficient to ensure safe, reliable testing.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Real-Time Polymerase Chain Reaction/methods , Virus Inactivation , Adult , Aged , COVID-19 , COVID-19 Testing , China/epidemiology , Coronavirus Infections/epidemiology , Humans , Infection Control/methods , Medical Laboratory Personnel , Middle Aged , Molecular Diagnostic Techniques/methods , Occupational Exposure/prevention & control , Pandemics , Pneumonia, Viral/epidemiology , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2 , Temperature , Time Factors
7.
Histopathology ; 77(5): 823-831, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-186376

ABSTRACT

AIMS: An ongoing outbreak of 2019 novel coronavirus (CoV) disease (COVID-19), caused by severe acute respiratory syndrome (SARS) CoV-2, has been spreading in multiple countries. One of the reasons for the rapid spread is that the virus can be transmitted from infected individuals without symptoms. Revealing the pathological features of early-phase COVID-19 pneumonia is important for understanding of its pathogenesis. The aim of this study was to explore the pulmonary pathology of early-phase COVID-19 pneumonia in a patient with a benign lung lesion. METHODS AND RESULTS: We analysed the pathological changes in lung tissue from a 55-year-old female patient with early-phase SARS-CoV-2 infection. In this case, right lower lobectomy was performed for a benign pulmonary nodule. Detailed clinical, laboratory and radiological data were also examined. This patient was confirmed to have preoperative SARS-CoV-2 infection by the use of real-time reverse transcription polymerase chain reaction and RNA in-situ hybridisation on surgically removed lung tissues. Histologically, COVID-19 pneumonia was characterised by exudative inflammation. The closer to the visceral pleura, the more severe the exudation of monocytes and lymphocytes. Perivascular inflammatory infiltration, intra-alveolar multinucleated giant cells, pneumocyte hyperplasia and intracytoplasmic viral-like inclusion bodies were seen. However, fibrinous exudate and hyaline membrane formation, which were typical pulmonary features of SARS pneumonia, were not evident in this case. Immunohistochemical staining results showed an abnormal accumulation of CD4+ helper T lymphocytes and CD163+ M2 macrophages in the lung tissue. CONCLUSION: The results highlighted the pulmonary pathological changes of early-phase SARS-CoV-2 infection, and suggested a role of immune dysfunction in the pathogenesis of COVID-19 pneumonia.


Subject(s)
Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Female , Humans , Inflammation/immunology , Inflammation/pathology , Inflammation/virology , Middle Aged , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL