Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Sustainability ; 15(11):8786, 2023.
Article in English | ProQuest Central | ID: covidwho-20243992

ABSTRACT

In December 2019, a novel coronavirus broke out in Wuhan City, Hubei Province, and, as the center of the coronavirus disease 2019 (COVID-19) epidemic, the economy and production throughout Hubei Province suffered huge temporary impacts. Based on the input–output and industrial pollution emissions data of 33 industrial industries in Hubei from 2010 to 2019, this article uses the non-parametric frontier analysis method to calculate the potential production losses and compliance costs caused by environmental regulations in Hubei's industrial sector by year and industry. Research has found that the environmental technology efficiency of the industrial sector in Hubei is showing a trend of increasing year-on-year, but the overall efficiency level is still not high, and there is great room for improvement. The calculation results with and without environmental regulatory constraints indicate that, generally, production losses and compliance costs may be encountered in the industrial sector in Hubei, and there are significant differences by industry. The potential production losses and compliance costs in pollution-intensive industries are higher than those in clean production industries. On this basis, we propose relevant policy recommendations to improve the technological efficiency of Hubei's industrial environment, in order to promote the high-quality development of Hubei's industry in the post-epidemic era.

2.
EPJ Data Sci ; 12(1): 17, 2023.
Article in English | MEDLINE | ID: covidwho-20238815

ABSTRACT

Human mobility restriction policies have been widely used to contain the coronavirus disease-19 (COVID-19). However, a critical question is how these policies affect individuals' behavioral and psychological well-being during and after confinement periods. Here, we analyze China's five most stringent city-level lockdowns in 2021, treating them as natural experiments that allow for examining behavioral changes in millions of people through smartphone application use. We made three fundamental observations. First, the use of physical and economic activity-related apps experienced a steep decline, yet apps that provide daily necessities maintained normal usage. Second, apps that fulfilled lower-level human needs, such as working, socializing, information seeking, and entertainment, saw an immediate and substantial increase in screen time. Those that satisfied higher-level needs, such as education, only attracted delayed attention. Third, human behaviors demonstrated resilience as most routines resumed after the lockdowns were lifted. Nonetheless, long-term lifestyle changes were observed, as significant numbers of people chose to continue working and learning online, becoming "digital residents." This study also demonstrates the capability of smartphone screen time analytics in the study of human behaviors. Supplementary Information: The online version contains supplementary material available at 10.1140/epjds/s13688-023-00391-9.

3.
ACS Nanosci Au ; 3(3): 192-203, 2023 Jun 21.
Article in English | MEDLINE | ID: covidwho-2305960

ABSTRACT

The success of mRNA vaccines during the COVID-19 pandemic has greatly accelerated the development of mRNA therapy. mRNA is a negatively charged nucleic acid that serves as a template for protein synthesis in the ribosome. Despite its utility, the instability of mRNA requires suitable carriers for in vivo delivery. Lipid nanoparticles (LNPs) are employed to protect mRNA from degradation and enhance its intracellular delivery. To further optimize the therapeutic efficacy of mRNA, site-specific LNPs have been developed. Through local or systemic administration, these site-specific LNPs can accumulate in specific organs, tissues, or cells, allowing for the intracellular delivery of mRNA to specific cells and enabling the exertion of local or systemic therapeutic effects. This not only improves the efficiency of mRNA therapy but also reduces off-target adverse effects. In this review, we summarize recent site-specific mRNA delivery strategies, including different organ- or tissue-specific LNP after local injection, and organ-specific or cell-specific LNP after intravenous injection. We also provide an outlook on the prospects of mRNA therapy.

4.
Plant cell, tissue and organ culture ; : 1-13, 2023.
Article in English | EuropePMC | ID: covidwho-2259848

ABSTRACT

The root of Astragalus membranaceus (Fisch.) Bunge is one of the most frequently used herbs in traditional Chinese medicine (TCM) formulae for fighting COVID-19 infections, due to the presence of isoflavonoids and astragalosides associated with antiviral and immune-enhancing activities. For the first time, the exposure of A. membranaceus hairy root cultures (AMHRCs) to different colors of LED lights i.e., red, green, blue, red/green/blue (1/1/1, RGB), and white, was conducted to promote the root growth and accumulation of isoflavonoids and astragalosides. LED light treatment regardless of colors was found beneficial for root growth, which might be a result of the formation of more root hairs upon light stimulation. Blue LED light was found most effective for enhancing phytochemical accumulation. Results showed that the productivity of root biomass in blue-light grown AMHRCs with an initial inoculum size of 0.6% for 55 days was 1.40-fold higher than that in dark (control), and yields of high-value isoflavonoids and astragalosides including calycosin, formononetin, astragaloside IV, and astragaloside I increased by 3.17-fold, 2.66-fold, 1.78-fold, and 1.52-fold relative to control, respectively. Moreover, the photooxidative stress together with transcriptional activation of biosynthesis genes might contribute to the enhanced accumulation of isoflavonoids and astragalosides in blue-light grown AMHRCs. Overall, this work offered a feasible approach for obtaining higher yields of root biomass and medicinally important compounds in AMHRCs via the simple supplementation of blue LED light, which made blue-light grown AMHRCs industrially attractive as plant factory in controlled growing systems. Graphical Supplementary Information The online version contains supplementary material available at 10.1007/s11240-023-02486-7. Key Message Blue LED light was found to simultaneously promote the root growth and accumulation of medicinally important compounds (calycosin, formononetin, astragaloside IV, and astragaloside I) in Astragalus membranaceus (Fisch.) Bunge hairy root cultures. Supplementary Information The online version contains supplementary material available at 10.1007/s11240-023-02486-7.

5.
The Lancet Respiratory medicine ; 2023.
Article in English | EuropePMC | ID: covidwho-2283523

ABSTRACT

Background Aerosolised Ad5-nCoV is the first approved mucosal respiratory COVID-19 vaccine to be used as a booster after the primary immunisation with COVID-19 vaccines. This study aimed to evaluate the safety and immunogenicity of aerosolised Ad5-nCoV, intramuscular Ad5-nCoV, or inactivated COVID-19 vaccine CoronaVac given as the second booster. Methods This is an open-label, parallel-controlled, phase 4 randomised trial enrolling healthy adult participants (≥18 years) who had completed a two-dose primary immunisation and a booster immunisation with inactivated COVID-19 vaccines (CoronaVac only) at least 6 months before, in Lianshui and Donghai counties, Jiangsu Province, China. We recruited eligible participants from previous trials in China (NCT04892459, NCT04952727, and NCT05043259) as cohort 1 (with the serum before and after the first booster dose available), and from eligible volunteers in Lianshui and Donghai counties, Jiangsu Province, as cohort 2. Participants were randomly assigned at a ratio of 1:1:1, using a web-based interactive response randomisation system, to receive the fourth dose (second booster) of aerosolised Ad5-nCoV (0·1 mL of 1·0 × 1011 viral particles per mL), intramuscular Ad5-nCoV (0·5 mL of 1·0 × 1011 viral particles per mL), or inactivated COVID-19 vaccine CoronaVac (0·5 mL), respectively. The co-primary outcomes were safety and immunogenicity of geometric mean titres (GMTs) of serum neutralising antibodies against prototype live SARS-CoV-2 virus 28 days after the vaccination, assessed on a per-protocol basis. Non-inferiority or superiority was achieved when the lower limit of the 95% CI of the GMT ratio (heterologous group vs homologous group) exceeded 0·67 or 1·0, respectively. This study was registered with ClinicalTrials.gov, NCT05303584 and is ongoing. Findings Between April 23 and May 23, 2022, from 367 volunteers screened for eligibility, 356 participants met eligibility criteria and received a dose of aerosolised Ad5-nCoV (n=117), intramuscular Ad5-nCoV (n=120), or CoronaVac (n=119). Within 28 days of booster vaccination, participants in the intramuscular Ad5-nCoV group reported a significantly higher frequency of adverse reactions than those in the aerosolised Ad5-nCoV and intramuscular CoronaVac groups (30% vs 9% and 14%, respectively;p<0·0001). No serious adverse events related to the vaccination were reported. The heterologous boosting with aerosolised Ad5-nCoV triggered a GMT of 672·4 (95% CI 539·7–837·7) and intramuscular Ad5-nCoV triggered a serum neutralising antibody GMT of 582·6 (505·0–672·2) 28 days after the booster dose, both of which were significantly higher than the GMT in the CoronaVac group (58·5 [48·0–71·4];p<0·0001). Interpretation A heterologous fourth dose (second booster) with either aerosolised Ad5-nCoV or intramuscular Ad5-nCoV was safe and highly immunogenic in healthy adults who had been immunised with three doses of CoronaVac. Funding National Natural Science Foundation of China, Jiangsu Provincial Science Fund for Distinguished Young Scholars, and Jiangsu Provincial Key Project of Science and Technology Plan.

6.
BMC Public Health ; 23(1): 542, 2023 03 22.
Article in English | MEDLINE | ID: covidwho-2288668

ABSTRACT

BACKGROUND: COVID-19, which is caused by SARS-CoV-2, is a major global health threat. The dominant variant of SARS-CoV-2 has changed over time due to continuous evolution. We aimed to evaluate the coverage of SARS-CoV-2 vaccination among employees in China, explore their willingness to receive the SARS-CoV-2 variant vaccine and examine the potential factors influencing vaccination coverage and willingness. METHODS: A cross-sectional epidemiological survey was conducted online from January 1, 2022, to January 30, 2022. The information collected in the survey included sociodemographic characteristics, lifestyle habits, vaccination coverage, willingness to be vaccinated against SARS-CoV-2 variants and the reasons for vaccination and willingness. Multivariable logistic regression models were used to assess the associations of potential factors with the rate of vaccination and the willingness to be vaccinated. RESULTS: Among 62,395 eligible participants, the coverage of SARS-CoV-2 vaccination was 98.9% for at least one dose and 70.1% for a booster. The great majority of vaccinated individuals (94.4%) voluntarily received the vaccine. A total of 60,694 respondents (97.7%) were willing to be vaccinated against SARS-CoV-2 variants, mainly due to confidence in the effectiveness of vaccines (92.8%). A total of 1431 respondents were unwilling to be vaccinated, mainly because of concerns about the adverse effects of vaccines (77.6%). Longer education duration was associated with a higher rate of SARS-CoV-2 vaccination and willingness to be vaccinated. General or poor health status and having no history of influenza vaccination were associated with a lower rate of SARS-CoV-2 vaccination and willingness to be vaccinated. Additionally, we observed a significant positive association of abuse experience with the willingness to be vaccinated. CONCLUSION: Although the rate of SARS-CoV-2 vaccination and the willingness to be vaccinated were relatively high in the study population, there were still some respondents with vaccine hesitancy. Relevant strategies based on significant related factors should be developed and implemented to encourage vaccination.


Subject(s)
COVID-19 Vaccines , Humans , COVID-19 Vaccines/administration & dosage , Male , Female , Adult , Middle Aged , Patient Acceptance of Health Care , Logistic Models , Occupational Groups , China
7.
Plant Cell Tissue Organ Cult ; 153(3): 511-523, 2023.
Article in English | MEDLINE | ID: covidwho-2259849

ABSTRACT

The root of Astragalus membranaceus (Fisch.) Bunge is one of the most frequently used herbs in traditional Chinese medicine (TCM) formulae for fighting COVID-19 infections, due to the presence of isoflavonoids and astragalosides associated with antiviral and immune-enhancing activities. For the first time, the exposure of A. membranaceus hairy root cultures (AMHRCs) to different colors of LED lights i.e., red, green, blue, red/green/blue (1/1/1, RGB), and white, was conducted to promote the root growth and accumulation of isoflavonoids and astragalosides. LED light treatment regardless of colors was found beneficial for root growth, which might be a result of the formation of more root hairs upon light stimulation. Blue LED light was found most effective for enhancing phytochemical accumulation. Results showed that the productivity of root biomass in blue-light grown AMHRCs with an initial inoculum size of 0.6% for 55 days was 1.40-fold higher than that in dark (control), and yields of high-value isoflavonoids and astragalosides including calycosin, formononetin, astragaloside IV, and astragaloside I increased by 3.17-fold, 2.66-fold, 1.78-fold, and 1.52-fold relative to control, respectively. Moreover, the photooxidative stress together with transcriptional activation of biosynthesis genes might contribute to the enhanced accumulation of isoflavonoids and astragalosides in blue-light grown AMHRCs. Overall, this work offered a feasible approach for obtaining higher yields of root biomass and medicinally important compounds in AMHRCs via the simple supplementation of blue LED light, which made blue-light grown AMHRCs industrially attractive as plant factory in controlled growing systems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11240-023-02486-7.

8.
Lancet Respir Med ; 11(7): 613-623, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2283524

ABSTRACT

BACKGROUND: Aerosolised Ad5-nCoV is the first approved mucosal respiratory COVID-19 vaccine to be used as a booster after the primary immunisation with COVID-19 vaccines. This study aimed to evaluate the safety and immunogenicity of aerosolised Ad5-nCoV, intramuscular Ad5-nCoV, or inactivated COVID-19 vaccine CoronaVac given as the second booster. METHODS: This is an open-label, parallel-controlled, phase 4 randomised trial enrolling healthy adult participants (≥18 years) who had completed a two-dose primary immunisation and a booster immunisation with inactivated COVID-19 vaccines (CoronaVac only) at least 6 months before, in Lianshui and Donghai counties, Jiangsu Province, China. We recruited eligible participants from previous trials in China (NCT04892459, NCT04952727, and NCT05043259) as cohort 1 (with the serum before and after the first booster dose available), and from eligible volunteers in Lianshui and Donghai counties, Jiangsu Province, as cohort 2. Participants were randomly assigned at a ratio of 1:1:1, using a web-based interactive response randomisation system, to receive the fourth dose (second booster) of aerosolised Ad5-nCoV (0·1 mL of 1·0 × 1011 viral particles per mL), intramuscular Ad5-nCoV (0·5 mL of 1·0 × 1011 viral particles per mL), or inactivated COVID-19 vaccine CoronaVac (0·5 mL), respectively. The co-primary outcomes were safety and immunogenicity of geometric mean titres (GMTs) of serum neutralising antibodies against prototype live SARS-CoV-2 virus 28 days after the vaccination, assessed on a per-protocol basis. Non-inferiority or superiority was achieved when the lower limit of the 95% CI of the GMT ratio (heterologous group vs homologous group) exceeded 0·67 or 1·0, respectively. This study was registered with ClinicalTrials.gov, NCT05303584 and is ongoing. FINDINGS: Between April 23 and May 23, 2022, from 367 volunteers screened for eligibility, 356 participants met eligibility criteria and received a dose of aerosolised Ad5-nCoV (n=117), intramuscular Ad5-nCoV (n=120), or CoronaVac (n=119). Within 28 days of booster vaccination, participants in the intramuscular Ad5-nCoV group reported a significantly higher frequency of adverse reactions than those in the aerosolised Ad5-nCoV and intramuscular CoronaVac groups (30% vs 9% and 14%, respectively; p<0·0001). No serious adverse events related to the vaccination were reported. The heterologous boosting with aerosolised Ad5-nCoV triggered a GMT of 672·4 (95% CI 539·7-837·7) and intramuscular Ad5-nCoV triggered a serum neutralising antibody GMT of 582·6 (505·0-672·2) 28 days after the booster dose, both of which were significantly higher than the GMT in the CoronaVac group (58·5 [48·0-71·4]; p<0·0001). INTERPRETATION: A heterologous fourth dose (second booster) with either aerosolised Ad5-nCoV or intramuscular Ad5-nCoV was safe and highly immunogenic in healthy adults who had been immunised with three doses of CoronaVac. FUNDING: National Natural Science Foundation of China, Jiangsu Provincial Science Fund for Distinguished Young Scholars, and Jiangsu Provincial Key Project of Science and Technology Plan.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , SARS-CoV-2 , Vaccines, Inactivated
9.
Sci Total Environ ; 875: 162661, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2274043

ABSTRACT

The paper discusses the implementation of Hong Kong's tailor-made sewage surveillance programme led by the Government, which has demonstrated how an efficient and well-organized sewage surveillance system can complement conventional epidemiological surveillance to facilitate the planning of intervention strategies and actions for combating COVID-19 pandemic in real-time. This included the setting up of a comprehensive sewerage network-based SARS-CoV-2 virus surveillance programme with 154 stationary sites covering 6 million people (or 80 % of the total population), and employing an intensive monitoring programme to take samples from each stationary site every 2 days. From 1 January to 22 May 2022, the daily confirmed case count started with 17 cases per day on 1 January to a maximum of 76,991 cases on 3 March and dropped to 237 cases on 22 May. During this period, a total of 270 "Restriction-Testing Declaration" (RTD) operations at high-risk residential areas were conducted based on the sewage virus testing results, where over 26,500 confirmed cases were detected with a majority being asymptomatic. In addition, Compulsory Testing Notices (CTN) were issued to residents, and the distribution of Rapid Antigen Test kits was adopted as alternatives to RTD operations in areas of moderate risk. These measures formulated a tiered and cost-effective approach to combat the disease in the local setting. Some ongoing and future enhancement efforts to improve efficacy are discussed from the perspective of wastewater-based epidemiology. Forecast models on case counts based on sewage virus testing results were also developed with R2 of 0.9669-0.9775, which estimated that up to 22 May 2022, around 2,000,000 people (~67 % higher than the total number of 1,200,000 reported to the health authority, due to various constraints or limitations) had potentially contracted the disease, which is believed to be reflecting the real situation occurring in a highly urbanized metropolis like Hong Kong.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring , Sewage , Pandemics , Hong Kong/epidemiology
11.
Pediatr Rheumatol Online J ; 20(1): 112, 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2162383

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a new syndrome with some clinical manifestations similar to Kawasaki disease (KD), which is difficult to distinguish. OBJECTIVE: The study aimed to characterize the demographic characteristics, clinical characteristics, laboratory features, cardiac complications, and treatment of MIS-C compared with KD. STUDY DESIGN: Studies were selected by searching the PubMed, EMBASE and so on before February 28, 2022. Statistical analyses were performed using Review Manager 5.4 software and STATA 14.0. RESULTS: Fourteen studies with 2928 participants were included. MIS-C patients tended to be older and there was no significant difference in the sex ratio. In terms of clinical characteristics, MIS-C patients were more frequently represented with respiratory, gastrointestinal symptoms and shock. At the same time, they had a lower incidence of conjunctivitis than KD patients. MIS-C patients had lower lymphocyte counts, platelet (PLT) counts, erythrocyte sedimentation rates (ESRs), alanine transaminase (ALT), and albumin levels and had higher levels of aspartate transaminase (AST), N-terminal pro-B-type natriuretic peptide (NT-pro-BNP), troponin, C-reactive protein (CRP), D-dimer, fibrinogen, ferritin, and creatinine. MIS-C patients had a higher incidence of left ventricle (LV) dysfunction, valvular regurgitation, pericardial effusion, myocarditis, and pericarditis. The incidence of coronary artery lesion (CAL) was lower in MIS-C patients [OR (95% CI): 0.52 (0.29, 0.93), p =0.03], while it was similar in the acute period. MIS-C patients had higher utilization of glucocorticoids (GCs) and lower utilization of intravenous immune globulin (IVIG). CONCLUSIONS: There were specific differences between MIS-C and KD, which might assist clinicians with the accurate recognition of MIS-C and further mechanistic research.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , Child , Humans , Mucocutaneous Lymph Node Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/etiology , Immunoglobulins, Intravenous/therapeutic use , C-Reactive Protein
12.
Nat Commun ; 13(1): 7727, 2022 12 13.
Article in English | MEDLINE | ID: covidwho-2160216

ABSTRACT

The generation time distribution, reflecting the time between successive infections in transmission chains, is a key epidemiological parameter for describing COVID-19 transmission dynamics. However, because exact infection times are rarely known, it is often approximated by the serial interval distribution. This approximation holds under the assumption that infectors and infectees share the same incubation period distribution, which may not always be true. We estimated incubation period and serial interval distributions using 629 transmission pairs reconstructed by investigating 2989 confirmed cases in China in January-February 2020, and developed an inferential framework to estimate the generation time distribution that accounts for variation over time due to changes in epidemiology, sampling biases and public health and social measures. We identified substantial reductions over time in the serial interval and generation time distributions. Our proposed method provides more reliable estimation of the temporal variation in the generation time distribution, improving assessment of transmission dynamics.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Infectious Disease Incubation Period , Time Factors , China/epidemiology
13.
Sci Transl Med ; 14(671): eabo5795, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2119264

ABSTRACT

Interstitial lung disease and associated fibrosis occur in a proportion of individuals who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through unknown mechanisms. We studied individuals with severe coronavirus disease 2019 (COVID-19) after recovery from acute illness. Individuals with evidence of interstitial lung changes at 3 to 6 months after recovery had an up-regulated neutrophil-associated immune signature including increased chemokines, proteases, and markers of neutrophil extracellular traps that were detectable in the blood. Similar pathways were enriched in the upper airway with a concomitant increase in antiviral type I interferon signaling. Interaction analysis of the peripheral phosphoproteome identified enriched kinases critical for neutrophil inflammatory pathways. Evaluation of these individuals at 12 months after recovery indicated that a subset of the individuals had not yet achieved full normalization of radiological and functional changes. These data provide insight into mechanisms driving development of pulmonary sequelae during and after COVID-19 and provide a rational basis for development of targeted approaches to prevent long-term complications.


Subject(s)
COVID-19 , Extracellular Traps , Humans , SARS-CoV-2 , Neutrophils , Lung
14.
J Struct Biol ; 214(4): 107921, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2105482

ABSTRACT

The throughput and fidelity of cryogenic cellular electron tomography (cryo-ET) is constantly increasing through advances in cryogenic electron microscope hardware, direct electron detection devices, and powerful image processing algorithms. However, the need for careful optimization of sample preparations and for access to expensive, high-end equipment, make cryo-ET a costly and time-consuming technique. Generally, only after the last step of the cryo-ET workflow, when reconstructed tomograms are available, it becomes clear whether the chosen imaging parameters were suitable for a specific type of sample in order to answer a specific biological question. Tools for a-priory assessment of the feasibility of samples to answer biological questions and how to optimize imaging parameters to do so would be a major advantage. Here we describe MEPSi (Membrane Embedded Protein Simulator), a simulation tool aimed at rapid and convenient evaluation and optimization of cryo-ET data acquisition parameters for studies of transmembrane proteins in their native environment. We demonstrate the utility of MEPSi by showing how to detangle the influence of different data collection parameters and different orientations in respect to tilt axis and electron beam for two examples: (1) simulated plasma membranes with embedded single-pass transmembrane αIIbß3 integrin receptors and (2) simulated virus membranes with embedded SARS-CoV-2 spike proteins.

15.
Lancet Respir Med ; 10(8): 739-748, 2022 08.
Article in English | MEDLINE | ID: covidwho-2082080

ABSTRACT

BACKGROUND: Due to waning immunity and protection against infection with SARS-CoV-2, a third dose of a homologous or heterologous COVID-19 vaccine has been proposed by health agencies for individuals who were previously primed with two doses of an inactivated COVID-19 vaccine. METHODS: We did a randomised, open-label, controlled trial to evaluate the safety and immunogenicity of heterologous boost immunisation with an orally administered aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in Chinese adults (≥18 years old) who had previously received two doses of an inactivated SARS-CoV-2 vaccine-Sinovac CoronaVac. Eligible participants were randomly assigned (1:1:1) to receive a heterologous booster vaccination with a low dose (1·0 × 1011 viral particles per mL; 0·1 mL; low dose group), or a high dose (1·0 × 1011 viral particles per mL; 0·2 mL; high dose group) aerosolised Ad5-nCoV, or a homologous intramuscular vaccination with CoronaVac (0·5 mL). Only laboratory staff were masked to group assignment. The primary endpoint for safety was the incidence of adverse reactions within 14 days after the booster dose. The primary endpoint for immunogenicity was the geometric mean titres (GMTs) of serum neutralising antibodies (NAbs) against live SARS-CoV-2 virus 14 days after the booster dose. This study was registered with ClinicalTrials.gov, NCT05043259. FINDINGS: Between Sept 14 and 16, 2021, 420 participants were enrolled: 140 (33%) participants per group. Adverse reactions were reported by 26 (19%) participants in the low dose group and 33 (24%) in the high dose group within 14 days after the booster vaccination, significantly less than the 54 (39%) participants in the CoronaVac group (p<0·0001). The low dose group had a serum NAb GMT of 744·4 (95% CI 520·1-1065·6) and the high dose group had a GMT of 714·1 (479·4-1063·7) 14 days after booster dose, significantly higher than the GMT in the CoronaVac group (78·5 [60·5-101·7]; p<0·0001). INTERPRETATION: We found that a heterologous booster vaccine with an orally administered aerosolised Ad5-nCoV is safe and highly immunogenic in adults who have previously received two doses of CoronaVac as the primary series vaccination. FUNDING: National Natural Science Foundation of China and Jiangsu Provincial Key Research and Development Program.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Adult , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Research , SARS-CoV-2 , Vaccination
16.
Lancet Glob Health ; 10(11): e1612-e1622, 2022 11.
Article in English | MEDLINE | ID: covidwho-2069828

ABSTRACT

BACKGROUND: The transmission dynamics of influenza were affected by public health and social measures (PHSMs) implemented globally since early 2020 to mitigate the COVID-19 pandemic. We aimed to assess the effect of COVID-19 PHSMs on the transmissibility of influenza viruses and to predict upcoming influenza epidemics. METHODS: For this modelling study, we used surveillance data on influenza virus activity for 11 different locations and countries in 2017-22. We implemented a data-driven mechanistic predictive modelling framework to predict future influenza seasons on the basis of pre-COVID-19 dynamics and the effect of PHSMs during the COVID-19 pandemic. We simulated the potential excess burden of upcoming influenza epidemics in terms of fold rise in peak magnitude and epidemic size compared with pre-COVID-19 levels. We also examined how a proactive influenza vaccination programme could mitigate this effect. FINDINGS: We estimated that COVID-19 PHSMs reduced influenza transmissibility by a maximum of 17·3% (95% CI 13·3-21·4) to 40·6% (35·2-45·9) and attack rate by 5·1% (1·5-7·2) to 24·8% (20·8-27·5) in the 2019-20 influenza season. We estimated a 10-60% increase in the population susceptibility for influenza, which might lead to a maximum of 1-5-fold rise in peak magnitude and 1-4-fold rise in epidemic size for the upcoming 2022-23 influenza season across locations, with a significantly higher fold rise in Singapore and Taiwan. The infection burden could be mitigated by additional proactive one-off influenza vaccination programmes. INTERPRETATION: Our results suggest the potential for substantial increases in infection burden in upcoming influenza seasons across the globe. Strengthening influenza vaccination programmes is the best preventive measure to reduce the effect of influenza virus infections in the community. FUNDING: Health and Medical Research Fund, Hong Kong.


Subject(s)
COVID-19 , Influenza, Human , COVID-19/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , Public Health , Seasons
17.
iScience ; 25(10): 105079, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2007782

ABSTRACT

Although open-access data are increasingly common and useful to epidemiological research, the curation of such datasets is resource-intensive and time-consuming. Despite the existence of a major source of COVID-19 data, the regularly disclosed case reports were often written in natural language with an unstructured format. Here, we propose a computational framework that can automatically extract epidemiological information from open-access COVID-19 case reports. We develop this framework by coupling a language model developed using deep neural networks with training samples compiled using an optimized data annotation strategy. When applied to the COVID-19 case reports collected from mainland China, our framework outperforms all other state-of-the-art deep learning models. The information extracted from our approach is highly consistent with that obtained from the gold-standard manual coding, with a matching rate of 80%. To disseminate our algorithm, we provide an open-access online platform that is able to estimate key epidemiological statistics in real time, with much less effort for data curation.

18.
Journal of Sensors ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-1962466

ABSTRACT

The recognition of aircraft wake vortex can provide an indicator of early warning for civil aviation transportation safety. In this paper, several wake vortex recognition models based on deep learning and traditional machine learning were presented. Nonetheless, these models are not completely suitable owing to their dependence on the visualization of LiDAR data that yields the information loss of in reconstructing the behavior patterns of wake vortex. To tackle this problem, we proposed a lightweight deep learning framework to recognize aircraft wake vortex in the wind field of Shenzhen Baoan Airport’s arrival and departure routes. The nature of the introduced model is geared towards three aspects. First, the dilation patch embedding module is used as the input representation of the framework, attaining additional rich semantics information over long distances while maintaining parameters. Second, we combined a separable convolution module with a hybrid attention mechanism, increasing the model’s attention to the space position of wake vortex core. Third, environmental factors that affect the vortex behavior of the aircraft’s wake were encoded into the model. Experiments were conducted on a Doppler LiDAR acquisition dataset to validate the effectiveness of the proposed model. The results show that the proposed network has an accuracy of 0.9963 and a recognition speed at 100 frames per second was achieved on an experimental device with 0.51 M parameters.

19.
20.
Fundamental Research ; 2022.
Article in English | ScienceDirect | ID: covidwho-1800049

ABSTRACT

The spatial spread of COVID-19 during early 2020 in China was primarily driven by outbound travelers leaving the epicenter, Wuhan, Hubei province. Existing studies focus on the influence of aggregated out-bound population flows originating from Wuhan;however, the impacts of different modes of transportation and the network structure of transportation systems on the early spread of COVID-19 in China are not well understood. Here, we assess the roles of the road, railway, and air transportation networks in driving the spatial spread of COVID-19 in China. We find that the short-range spread within Hubei province was dominated by ground traffic, notably, the railway transportation. In contrast, long-range spread to cities in other provinces was mediated by multiple factors, including a higher risk of case importation associated with air transportation and a larger outbreak size in hub cities located at the center of transportation networks. We further show that, although the dissemination of SARS-CoV-2 across countries and continents is determined by the worldwide air transportation network, the early geographic dispersal of COVID-19 within China is better predicted by the railway traffic. Given the recent emergence of multiple more transmissible variants of SARS-CoV-2, our findings can support a better assessment of the spread risk of those variants and improve future pandemic preparedness and responses.

SELECTION OF CITATIONS
SEARCH DETAIL