Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Year range
Preprint in English | medRxiv | ID: ppmedrxiv-22279589


BACKGROUNDThe rising breakthrough infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, especially Omicron and its sub-lineages, have raised an urgent need to develop broad-spectrum vaccines against coronavirus disease 2019 (COVID-19). We have developed a mosaic-type recombinant vaccine candidate, named NVSI-06-09, having immune potentials against a broad range of SARS-CoV-2 variants. METHODSAn ongoing randomized, double-blind, controlled phase 2 trial was conducted to evaluate the safety and immunogenicity of NVSI-06-09 as a booster dose in subjects aged 18 years and older from the United Arab Emirates (UAE), who had completed two or three doses of BBIBP-CorV vaccinations at least 6 months prior to the enrollment. The participants were randomly assigned with 1:1 to receive a booster dose of NVSI-06-09 or BBIBP-CorV. The primary outcomes were immunogenicity and safety against SARS-CoV-2 Omicron variant, and the exploratory outcome was cross-immunogenicity against other circulating strains. RESULTSA total of 516 participants received booster vaccination. Interim results showed a similar safety profile between NVSI-06-09 and BBIBP-CorV booster groups, with low incidence of adverse reactions of grade 1 or 2. For immunogenicity, by day 14 after the booster vaccination, the fold rises in neutralizing antibody geometric mean titers (GMTs) from baseline level elicited by NVSI-06-09 were remarkably higher than those by BBIBP-CorV against the prototype strain (19.67 vs 4.47-fold), Omicron BA.1.1 (42.35 vs 3.78-fold), BA.2 (25.09 vs 2.91-fold), BA.4 (22.42 vs 2.69-fold), and BA.5 variants (27.06 vs 4.73-fold). Similarly, the neutralizing GMTs boosted by NVSI-06-09 against Beta and Delta variants were also 6.60-fold and 7.17-fold higher than those boosted by BBIBP-CorV. CONCLUSIONSA booster dose of NVSI-06-09 was well-tolerated and elicited broad-spectrum neutralizing responses against SARS-CoV-2 prototype strain and immune-evasive variants, including Omicron and its sub-lineages. The immunogenicity of NVSI-06-09 as a booster vaccine was superior to that of BBIBP-CorV. (Funded by LIBP and BIBP of Sinopharm; number, NCT05293548).

Frontiers in microbiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1905184


Porcine epidemic diarrhoea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae. It causes acute watery diarrhoea and vomiting in piglets with high a mortality rate. Currently, the GII genotype, PEDV, possesses a high separation rate in wild strains and is usually reported in immunity failure cases, which indicates a need for a portable and sensitive detection method. Here, reverse transcription–recombinase aided amplification (RT-RAA) was combined with the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas12a system to establish a multiplexable, rapid and portable detection platform for PEDV. The CRISPR RNA (crRNA) against Spike (S) gene of GII PEDV specifically were added into the protocol. This system is suitable for different experimental conditions, including ultra-sensitive fluorescence, visual, UV light, or flow strip detection. Moreover, it exhibits high sensitivity and specificity and can detect at least 100 copies of the target gene in each reaction. The CRISPR/Cas12a detection platform requires less time and represents a rapid, reliable and practical tool for the rapid diagnosis of GII genotype PEDV.

Preprint in English | bioRxiv | ID: ppbiorxiv-486173


Large-scale populations in the world have been vaccinated with COVID-19 vaccines, however, breakthrough infections of SARS-CoV-2 are still growing rapidly due to the emergence of immune-evasive variants, especially Omicron. It is urgent to develop effective broad-spectrum vaccines to better control the pandemic of these variants. Here, we present a mosaic-type trimeric form of spike receptor-binding domain (mos-tri-RBD) as a broad-spectrum vaccine candidate, which carries the key mutations from Omicron and other circulating variants. Tests in rats showed that the designed mos-tri-RBD, whether used alone or as a booster shot, elicited potent cross-neutralizing antibodies against not only Omicron but also other immune-evasive variants. Neutralizing antibody titers induced by mos-tri-RBD were substantially higher than those elicited by homo-tri-RBD (containing homologous RBDs from prototype strain) or the inactivated vaccine BBIBP-CorV. Our study indicates that mos-tri-RBD is highly immunogenic, which may serve as a broad-spectrum vaccine candidate in combating SARS-CoV-2 variants including Omicron.

Preprint in English | bioRxiv | ID: ppbiorxiv-448958


The spike (S) protein receptor-binding domain (RBD) of SARS-CoV-2 is an attractive target for COVID-19 vaccine developments, which naturally exists in a trimeric form. Here, guided by structural and computational analyses, we present a mutation-integrated trimeric form of RBD (mutI tri-RBD) as a broadly protective vaccine candidate, in which three RBDs were individually grafted from three different circulating SARS-CoV-2 strains including the prototype, Beta (B.1.351) and Kappa (B.1.617). The three RBDs were then connected end-to-end and co-assembled to possibly mimic the native trimeric arrangements in the natural S protein trimer. The recombinant expression of the mutI tri-RBD, as well as the homo-tri-RBD where the three RBDs were all truncated from the prototype strain, by mammalian cell exhibited correct folding, strong bio-activities, and high stability. The immunization of both the mutI tri-RBD and homo-tri-RBD plus aluminum adjuvant induced high levels of specific IgG and neutralizing antibodies against the SARS-CoV-2 prototype strain in mice. Notably, regarding to the "immune-escape" Beta (B.1.351) variant, mutI tri-RBD elicited significantly higher neutralizing antibody titers than homo-tri-RBD. Furthermore, due to harboring the immune-resistant mutations as well as the evolutionarily convergent hotspots, the designed mutI tri-RBD also induced strong broadly neutralizing activities against various SARS-CoV-2 variants, especially the variants partially resistant to homo-tri-RBD. Homo-tri-RBD has been approved by the China National Medical Products Administration to enter clinical trial (No. NCT04869592), and the superior broad neutralization performances against SARS-CoV-2 support the mutI tri-RBD as a more promising vaccine candidate for further clinical developments.