Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
ACS Chem Neurosci ; 12(4): 589-595, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1057681


Olfactory dysfunction is one of the most frequent and specific symptoms of coronavirus disease 2019 (COVID-19). Information on the damage and repair of the neuroepithelium and its impact on olfactory function after COVID-19 is still incomplete. While severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes the ongoing worldwide outbreak of COVID-19, little is known about the changes triggered by SARS-CoV-2 in the olfactory epithelium (OE) at the cellular level. Here, we report profiles of the OE after SARS-CoV-2 infection in golden Syrian hamsters, which is a reliable animal model of COVID-19. We observed severe damage in the OE as early as 3 days postinoculation and regionally specific damage and regeneration of the OE within the nasal cavity; the nasal septal region demonstrated the fastest recovery compared to other regions in the nasal turbinates. These findings suggest that anosmia related to SARS-CoV-2 infection may be fully reversible.

Anosmia/physiopathology , COVID-19/pathology , Olfactory Mucosa/pathology , Olfactory Receptor Neurons/pathology , Regeneration , SARS-CoV-2 , Animals , Anosmia/etiology , COVID-19/complications , COVID-19/physiopathology , Disease Models, Animal , Mesocricetus , Nasal Cavity , Nasal Septum , Olfactory Mucosa/physiology , Olfactory Receptor Neurons/physiology , Organ Size , Turbinates
Laryngoscope ; 131(6): E2013-E2017, 2021 06.
Article in English | MEDLINE | ID: covidwho-969763


OBJECTIVES/HYPOTHESIS: Intracellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) depends on the interaction between its spike protein with the cellular receptor angiotensin-converting enzyme 2 (ACE2) and depends on Furin-mediated spike protein cleavage and spike protein priming by host cell proteases, including transmembrane protease serine 2 (TMPRSS2). As the expression of ACE2, TMPRSS2, and Furin in the middle and inner ear remain unclear, we analyzed the expression of these proteins in mouse ear tissues. STUDY DESIGN: Animal Research. METHODS: We performed immunohistochemical analysis to examine the distribution of ACE2, TMPRSS2, and Furin in the Eustachian tube, middle ear spaces, and cochlea of mice. RESULTS: ACE2 was present in the nucleus of the epithelium of the middle ear and Eustachian tube, as well as in some nuclei of the hair cells in the organ of Corti, in the stria vascularis, and the spiral ganglion cells. ACE2 was also expressed in the cytoplasm of the stria vascularis. TMPRSS2 was expressed in both the nucleus and cytoplasm in the middle spaces, with the expression being stronger in the nucleus in the mucosal epithelium of the middle ear spaces and Eustachian tube. TMPRSS2 was present in the cytoplasm in the organ of Corti and stria vascularis and in the nucleus and cytoplasm in the spiral ganglion. Furin was expressed in the cytoplasm in the middle ear spaces, Eustachian tube, and cochlea. CONCLUSIONS: ACE2, TMPRSS2, and Furin are diffusely present in the Eustachian tube, middle ear spaces, and cochlea, suggesting that these tissues are susceptible to SARS-CoV-2 infection. LEVEL OF EVIDENCE: NA Laryngoscope, 131:E2013-E2017, 2021.

Angiotensin-Converting Enzyme 2/genetics , COVID-19/pathology , Ear, Inner/pathology , Ear, Middle/pathology , Eustachian Tube/pathology , Furin/genetics , Gene Expression/genetics , Serine Endopeptidases/genetics , Animals , Cochlea/pathology , Epithelium/pathology , Immunohistochemistry , Mice , Mucous Membrane/pathology , Organ of Corti/pathology , Spiral Ganglion/pathology , Stria Vascularis/pathology , Temporal Bone/pathology
Laryngoscope ; 131(3): E932-E939, 2021 03.
Article in English | MEDLINE | ID: covidwho-774497


OBJECTIVE: Patients with coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibit not only respiratory symptoms but also symptoms of chemo-sensitive disorders. Cellular entry of SARS-CoV-2 depends on the binding of its spike protein to a cellular receptor named angiotensin-converting enzyme 2 (ACE2), and the subsequent spike protein-priming by host cell proteases, including transmembrane protease serine 2 (TMPRSS2). Thus, high expression of ACE2 and TMPRSS2 is considered to enhance the invading capacity of SARS-CoV-2. METHODS: To elucidate the underlying histological mechanisms of the aerodigestive disorders caused by SARS-CoV-2, we investigated the expression of ACE2 and TMPRSS2 proteins using immunohistochemistry, in the aerodigestive tracts of the tongue, hard palate with partial nasal tissue, larynx with hypopharynx, trachea, esophagus, and lung of rats. RESULTS: Co-expression of ACE2 and TMPRSS2 proteins was observed in the taste buds of the tongue, nasal epithelium, trachea, bronchioles, and alveoli with varying degrees of expression. Remarkably, TMPRSS2 expression was more distinct in the peripheral alveoli than in the central alveoli. These results coincide with the reported clinical symptoms of COVID-19, such as the loss of taste, loss of olfaction, and respiratory dysfunction. CONCLUSIONS: A wide range of organs have been speculated to be affected by SARS-CoV-2 depending on the expression levels of ACE2 and TMPRSS2. Differential distribution of TMPRSS2 in the lung indicated the COVID-19 symptoms to possibly be exacerbated by TMPRSS2 expression. This study might provide potential clues for further investigation of the pathogenesis of COVID-19. LEVEL OF EVIDENCE: NA Laryngoscope, 131:E932-E939, 2021.

Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Angiotensin-Converting Enzyme 2/analysis , Animals , COVID-19/virology , Esophagus/metabolism , Humans , Immunohistochemistry , Larynx/metabolism , Lung/metabolism , Male , Membrane Proteins/analysis , Models, Animal , Palate, Hard/metabolism , Rats , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/analysis , Spike Glycoprotein, Coronavirus/metabolism , Tongue/metabolism , Trachea/metabolism , Virus Internalization