Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Cell Biosci ; 12(1): 15, 2022 Feb 09.
Article in English | MEDLINE | ID: covidwho-1686027


BACKGROUND: Thrombosis and coagulopathy are pervasive pathological features of coronavirus disease 2019 (COVID-19), and thrombotic complications are a sign of severe COVID-19 disease and are associated with multiple organ failure and increased mortality. Platelets are essential cells that regulate hemostasis, thrombus formation and inflammation; however, the mechanism underlying the interaction between platelets and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains unclear. RESULTS: The present study performed RNA sequencing on the RNA isolated from platelets obtained from 10 COVID-19 patients and eight healthy donors, and discovered that SARS-CoV-2 not only significantly altered the coding and non-coding transcriptional landscape, but also altered the function of the platelets, promoted thrombus formation and affected energy metabolism of platelets. Integrative network biology analysis identified four key subnetworks and 16 risk regulators underlying SARS-CoV-2 infection, involved in coronavirus disease-COVID-19, platelet activation and immune response pathways. Furthermore, four risk genes (upstream binding transcription factor, RNA polymerase II, I and III subunit L, Y-box binding protein 1 and yippee like 2) were found to be associated with COVID-19 severity. Finally, a significant alteration in the von Willebrand factor/glycoprotein Ib-IX-V axis was revealed to be strongly associated with platelet aggregation and immunothrombosis. CONCLUSIONS: The transcriptional landscape and the identification of critical subnetworks and risk genes of platelets provided novel insights into the molecular mechanisms of immunothrombosis in COVID-19 progression, which may pave the way for the development of novel therapeutic strategies for preventing COVID-19-associated thrombosis and improving the clinical outcome of COVID-19 patients.

Future Microbiol ; 16(11): 769-776, 2021 07.
Article in English | MEDLINE | ID: covidwho-1308246


The current study presents two patients who lived in a rural family with close contact and suffered from rapidly progressive pneumonia. Chest computed tomography images and lymphocytopenia indicated the possibility of COVID-19 infection, but antibody and nucleic acid tests excluded this possibility. Negative results were obtained from corresponding tests for pneumococcal, adenovirus, fungal and legionella infection. Metagenomics analysis and subsequent antibody tests confirmed mycoplasma pneumonia. After treating with moxifloxacin, both patients recovered well and left the hospital. In terms of complicated infectious disease, consideration of atypical pathogens and medical and epidemiological history were important for differential diagnosis of COVID-19; metagenomics analysis was useful to provide direct references for diagnosis.

Moxifloxacin/therapeutic use , Pneumonia, Mycoplasma/diagnosis , Adolescent , Adult , COVID-19 , DNA, Bacterial , Diagnosis, Differential , Feces/microbiology , Female , Humans , Male , Metagenomics , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Pneumonia, Mycoplasma/drug therapy , Sputum/microbiology , Young Adult