Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Document Type
Language
Year range
1.
Nano Today ; 40: 101243, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1300951

ABSTRACT

The outbreak of SARS-coronavirus 2 (SARS-CoV2) has become a global health emergency. Although enormous efforts have been made, there is still no effective treatment against the new virus. Herein, a TiO2 supported single-atom nanozyme containing atomically dispersed Ag atoms (Ag-TiO2 SAN) is designed to serve as a highly efficient antiviral nanomaterial. Compared with traditional nano-TiO2 and Ag, Ag-TiO2 SAN exhibits higher adsorption (99.65%) of SARS-CoV2 pseudovirus. This adsorption ability is due to the interaction between SAN and receptor binding domain (RBD) of spike 1 protein of SARS-CoV2. Theoretical calculation and experimental evidences indicate that the Ag atoms of SAN strongly bind to cysteine and asparagine, which are the most abundant amino acids on the surface of spike 1 RBD. After binding to the virus, the SAN/virus complex is typically phagocytosed by macrophages and colocalized with lysosomes. Interestingly, Ag-TiO2 SAN possesses high peroxidase-like activity responsible for reactive oxygen species production under acid conditions. The highly acidic microenvironment of lysosomes could favor oxygen reduction reaction process to eliminate the virus. With hACE2 transgenic mice, Ag-TiO2 SAN showed efficient anti-SARS-CoV2 pseudovirus activity. In conclusion, Ag-TiO2 SAN is a promising nanomaterial to achieve effective antiviral effects for SARS-CoV2.

2.
Biosens Bioelectron ; 173: 112817, 2020 Nov 13.
Article in English | MEDLINE | ID: covidwho-935459

ABSTRACT

COVID-19 has evolved into a global pandemic. Early and rapid detection is crucial to control of the SARS-CoV-2 transmission. While representing the gold standard for early diagnosis, nucleic acid tests for SARS-CoV-2 are often complicated and time-consuming. Serological rapid antibody tests are characterized by high rates of false-negative diagnoses, especially during early infection. Here, we developed a novel nanozyme-based chemiluminescence paper assay for rapid and sensitive detection of SARS-CoV-2 spike antigen, which integrates nanozyme and enzymatic chemiluminescence immunoassay with the lateral flow strip. The core of our paper test is a robust Co-Fe@hemin-peroxidase nanozyme that catalyzes chemiluminescence comparable with natural peroxidase HRP and thus amplifies immune reaction signal. The detection limit for recombinant spike antigen of SARS-CoV-2 was 0.1 ng/mL, with a linear range of 0.2-100 ng/mL. Moreover, the sensitivity of test for pseudovirus could reach 360 TCID50/mL, which was comparable with ELISA method. The strip recognized SARS-CoV-2 antigen specifically, and there was no cross reaction with other coronaviruses or influenza A subtypes. This testing can be completed within 16 min, much shorter compared to the usual 1-2 h required for currently used nucleic acid tests. Furthermore, signal detection is feasible using the camera of a standard smartphone. Ingredients for nanozyme synthesis are simple and readily available, considerably lowering the overall cost. In conclusion, our paper test provides a high-sensitive point-of-care testing (POCT) approach for SARS-CoV-2 antigen detection, which should greatly facilitate early screening of SARS-CoV-2 infections, and considerably lower the financial burden on national healthcare resources.

SELECTION OF CITATIONS
SEARCH DETAIL
...