Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Year range
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331690


The unprecedented coronavirus disease (COVID-19) epidemic has created a worldwide public health emergency, and there is an urgent need to develop an effective antiviral drug to control this severe infectious disease. Here, we found that the E, or M membrane proteins of coronavirus could be targeted by a 28-residue antibody mimetic by fusing two antibody Fab complementarity-determining regions (VHCDR1 and VLCDR3) through a cognate framework region (VHFR2) of the antibodies which recognize the coronavirus E or M proteins. We constructed a fusion protein, pheromonicin-covid-19 (PMC-covid-19), by linking colicin Ia, a bactericidal molecule produced by E.coli which kills target cells by forming a voltage-dependent channel in target lipid bilayers, to that antibody mimetic. The E, or M protein/antibody mimetic interaction initiated the formation of irreversible PMC-covid-19 channel in the covid-19 envelope and infected host cell membrane resulting in leakage of cellular contents. PMC-covid-19 demonstrates broad-spectrum protective efficacy against tested variants of coronavirus severe acute respiratory syndrome (p<0.01-0.0001). PMC-covid-19 significantly altered outcomes of in vivo fatal covid-19 challenge infection without evident toxicity, making it an appropriate candidate for further clinical evaluation.

Cell ; 185(10): 1728-1744.e16, 2022 05 12.
Article in English | MEDLINE | ID: covidwho-1767964


As the emerging variants of SARS-CoV-2 continue to drive the worldwide pandemic, there is a constant demand for vaccines that offer more effective and broad-spectrum protection. Here, we report a circular RNA (circRNA) vaccine that elicited potent neutralizing antibodies and T cell responses by expressing the trimeric RBD of the spike protein, providing robust protection against SARS-CoV-2 in both mice and rhesus macaques. Notably, the circRNA vaccine enabled higher and more durable antigen production than the 1mΨ-modified mRNA vaccine and elicited a higher proportion of neutralizing antibodies and distinct Th1-skewed immune responses. Importantly, we found that the circRNARBD-Omicron vaccine induced effective neutralizing antibodies against the Omicron but not the Delta variant. In contrast, the circRNARBD-Delta vaccine protected against both Delta and Omicron or functioned as a booster after two doses of either native- or Delta-specific vaccination, making it a favorable choice against the current variants of concern (VOCs) of SARS-CoV-2.

COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca mulatta , Mice , RNA, Circular/genetics , SARS-CoV-2/genetics , Vaccines, Synthetic/genetics , mRNA Vaccines