Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell ; 185(13): 2265-2278.e14, 2022 06 23.
Article in English | MEDLINE | ID: covidwho-1803705

ABSTRACT

Breakthrough infections by SARS-CoV-2 variants become the global challenge for pandemic control. Previously, we developed the protein subunit vaccine ZF2001 based on the dimeric receptor-binding domain (RBD) of prototype SARS-CoV-2. Here, we developed a chimeric RBD-dimer vaccine approach to adapt SARS-CoV-2 variants. A prototype-Beta chimeric RBD-dimer was first designed to adapt the resistant Beta variant. Compared with its homotypic forms, the chimeric vaccine elicited broader sera neutralization of variants and conferred better protection in mice. The protection of the chimeric vaccine was further verified in macaques. This approach was generalized to develop Delta-Omicron chimeric RBD-dimer to adapt the currently prevalent variants. Again, the chimeric vaccine elicited broader sera neutralization of SARS-CoV-2 variants and conferred better protection against challenge by either Delta or Omicron SARS-CoV-2 in mice. The chimeric approach is applicable for rapid updating of immunogens, and our data supported the use of variant-adapted multivalent vaccine against circulating and emerging variants.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , SARS-CoV-2/genetics
3.
Phytomedicine ; 90: 153635, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1275633

ABSTRACT

BACKGROUND: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases and could occur in severe COVID-19 patients. Re-Du-Ning injection (RDN) is a tradition Chinese medicine preparation which has been clinically used for treatment of respiratory diseases including COVID-19. PURPOSE: To elucidate the potential mechanisms of RDN for the treatment of ALI. METHODS: Female C57BL/6J mice were used to establish ALI model by intraperitoneal injection 10 mg/kg LPS, and RDN injection was intraperitoneally administered with the dose of 5 and 10 ml/kg. The cytokines were measured by ELISA and qPCR. The data related to NETs were analyzed by ELISA, immunofluorescence, Western blotting and network pharmacological approach. RESULTS: RDN robustly alleviated LPS-induced ALI. Meanwhile, RDN downregulated the expression of pro-inflammatory cytokines, such as IL-1ß, IL-6 and TNF-α. Specifically, RDN treatment inhibited the formation of neutrophil extracellular traps (NETs) and remarkably suppressed the protein of PAD4. The active compound from RDN decreased the phosphorylation of ERK1/2. CONCLUSION: These findings demonstrate that RDN ameliorates LPS-induced ALI through suppressing MAPK pathway to inhibit the formation of NETs.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal/pharmacology , Extracellular Traps , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Animals , Female , Lipopolysaccharides , Lung , Mice , Mice, Inbred C57BL
4.
Cardiol Res Pract ; 2021: 8874450, 2021.
Article in English | MEDLINE | ID: covidwho-1140380

ABSTRACT

The number of confirmed COVID-19 cases has increased drastically; however, information regarding the impact of this disease on the occurrence of arrhythmias is scarce. The aim of this study was to determine the impact of COVID-19 on arrhythmia occurrence. This prospective study included patients with COVID-19 treated at the Leishenshan Temporary Hospital of Wuhan City, China, from February 24 to April 5, 2020. Demographic, comorbidity, and arrhythmias data were collected from patients with COVID-19 (n = 84) and compared with control data from patients with bacterial pneumonia (n = 84) infection. Furthermore, comparisons were made between patients with severe and nonsevere COVID-19 and between older and younger patients. Compared with patients with bacterial pneumonia, those with COVID-19 had higher total, mean, and minimum heart rates (all P < 0.01). Patients with severe COVID-19 (severe and critical type diseases) developed more atrial arrhythmias compared with those with nonsevere symptoms. Plasma creatine kinase isoenzyme (CKMB) levels (P=0.01) were higher in the severe group than in the nonsevere group, and there were more deaths in the severe group than in the nonsevere group (6 (15%) vs. 3 (2.30%); P=0.05). Premature atrial contractions (PAC) and nonsustained atrial tachycardia (NSAT) were significantly positively correlated with plasma CKMB levels but not with high-sensitive cardiac troponin I or myoglobin levels. Our data demonstrate that COVID-19 patients have higher total, mean, and minimum heart rates compared with those with bacterial pneumonia. Patients with severe or critical disease had more frequent atrial arrhythmias (including PAC and AF) and higher CKMB levels and mortality than those with nonsevere symptoms.

5.
SciFinder; 2020.
Preprint | SciFinder | ID: ppcovidwho-5273

ABSTRACT

A review. Coronaviruses, a large family of single-stranded RNA viruses, are responsible for three large-scale worldwide epidemics in the first two decades of the 21st century.Coronaviruses, a large family of single-stranded RNA viruses, are responsible for three large-scale worldwide epidemics in the first two decades of the 21st century. It is imperative to strengthen the research on coronaviruses. This review summarizes the similarities and differences of three coronaviruses including SARS-coV, MERS-coV, SARS-coV-2 in structure, gene, origin, infectiousness, and pathogenicity. The review illuminates immune response mechanism and intervention strategies in term of cytokine storm, neutrophil extracellular traps, imbalance of lymphocyte subsets in patients infected with coronavirus based on exptl. studies and clin. case reports. Finally, new therapeutic strategies and ideas are put forward for the prevention and treatment of coronavirus disease 2091 (COVID-19).

6.
Chin. J. Microbiol. Immunol. ; 7(40): 511-517, 20200731.
Article in Chinese | WHO COVID, ELSEVIER | ID: covidwho-701956

ABSTRACT

Since December 2019, the global outbreak of COVID-19 has posed a serious threat to the lives and health of people in the world. Based on the immunopathogenesis of COVID-19, this article analyzed the changes in the immune system, lymphopenia and cytokine storm caused by 2019-nCoV infection, and summarized the present situation and the advantages and disadvantages of immunosuppressants for the treatment of COVID-19, aiming to explore effective immunosuppressive therapy and provide reference for clinical application.

SELECTION OF CITATIONS
SEARCH DETAIL