Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add filters

Year range
1.
Emerg Microbes Infect ; : 1-9, 2022 Jan 05.
Article in English | MEDLINE | ID: covidwho-1605599

ABSTRACT

Since the SARS-CoV-2 Omicron variant was first reported from South Africa, it has rapidly spread in over 100 countries. Only two cases infected by the Omicron variant were recently identified in China. The one case in Guangzhou has a relatively long incubation time and mild symptoms. Analysis of the complete viral genome sequence shows three missing Omicron unique mutations and one additional mutation in the newly characterized genome. These unique mutations may be related to the clinical presentation in this case.

2.
Evid Based Complement Alternat Med ; 2021: 5582908, 2021.
Article in English | MEDLINE | ID: covidwho-1582882

ABSTRACT

Objective: To systematically evaluate the value of lymphocytes, platelets, and interleukin-6 in predicting the mortality of patients with coronavirus disease 2019 (COVID-19) and to provide medical evidence for the long-term prognosis of patients with COVID-19. Methods: The latest studies published until July 1, 2021, were retrieved from databases including PubMed, Embase, and Cochrane Library to analyze the ability of lymphocyte and platelet counts as well as interleukin-6 levels to predict mortality in patients with COVID-19. Two reviewers independently screened the literature and extracted data, then evaluated the risk of bias of included studies using the Newcastle-Ottawa Scale (NOS), and used Stata 15.0 software for meta-analysis. Results: A total of nine studies were included, involving 4340 patients. There were 1330 patients in the death group and 3010 patients in the survival group. Meta-analysis showed that, compared with the survival group, lymphocyte counts in the death group were significantly lower (SMD = -0.64, 95% CI: -0.86--0.43, p < 0.01), platelet counts were significantly lower (SMD = -0.47, 95% CI: -0.67--0.27, p < 0.01), and interleukin-6 levels were significantly higher (SMD = 1.07, 95% CI: 0.62-1.53, p < 0.01). Conclusion: Lymphocyte and platelet counts, as well as interleukin-6 levels, can help predict the mortality of patients with COVID-19. Due to the limitation of the number and quality of the included studies, these conclusions need to be validated by additional high-quality studies.

3.
Front Microbiol ; 12: 723818, 2021.
Article in English | MEDLINE | ID: covidwho-1581279

ABSTRACT

COVID-19 is a severe disease in humans, as highlighted by the current global pandemic. Several studies about the metabolome of COVID-19 patients have revealed metabolic disorders and some potential diagnostic markers during disease progression. However, the longitudinal changes of metabolomics in COVID-19 patients, especially their association with disease progression, are still unclear. Here, we systematically analyzed the dynamic changes of the serum metabolome of COVID-19 patients, demonstrating that most of the metabolites did not recover by 1-3 days before discharge. A prominent signature in COVID-19 patients comprised metabolites of amino acids, peptides, and analogs, involving nine essential amino acids, 10 dipeptides, and four N-acetylated amino acids. The levels of 12 metabolites in amino acid metabolism, especially three metabolites of the ornithine cycle, were significantly higher in severe patients than in mild ones, mainly on days 1-3 or 4-6 since onset. Integrating blood metabolomic, biochemical, and cytokine data, we uncovered a highly correlated network, including 6 cytokines, 13 biochemical parameters, and 49 metabolites. Significantly, five ornithine cycle-related metabolites (ornithine, N-acetylornithine, 3-amino-2-piperidone, aspartic acid, and asparagine) highly correlated with "cytokine storms" and coagulation index. We discovered that the ornithine cycle dysregulation significantly correlated with inflammation and coagulation in severe patients, which may be a potential mechanism of COVID-19 pathogenicity. Our study provided a valuable resource for detailed exploration of metabolic factors in COVID-19 patients, guiding metabolic recovery, understanding the pathogenic mechanisms, and creating drugs against SARS-CoV-2 infection.

4.
Int J Environ Res Public Health ; 18(24)2021 12 20.
Article in English | MEDLINE | ID: covidwho-1580708

ABSTRACT

This study focused on older adults (60+ years old) of both genders in Abu Dhabi during the COVID-19 pandemic before vaccines were made available (age ranged from 60 years to 75 years). They faced more strict rules of movement restriction and isolation that might have resulted in certain psychological feelings and social reactions. The main objective was to understand Abu Dhabi older adults' psychological feelings during the pandemic and to identify their main concerns and challenges considering the various COVID-19-related policies and restrictions. The psychological feelings focused on fear, loneliness, sadness, irritability, emotional exhaustion, depressive symptoms, sleeping disorders, overeating, and excessive screen use. The objectives also included the changes in the psychological feelings concerning time. Other objectives covered better understanding the differences in (some activities) compared to the other age categories. Data were gathered through an online survey of community members from February to July 2020 as part of government initiatives (Department of Community Development). Responses were collected from 574 older adults in Abu Dhabi (60.1% male and 39.9% female). The analysis mainly used descriptive analysis, t-tests, analysis of variance (ANOVA), and simple trend analysis. For all tests, a p-value less than 0.05 was used for significance. The results pointed to the significant rise in feelings related to excessive screen use, fear, loneliness, and stress. The most significant concerns were related to more restrictions being imposed and not being able to see the grandchildren.The impact of new technologies on their quality of life was significantly reflected by respondents. The influence of the pandemic on older adults' health and weight was also investigated. Analysis of variance, t-tests, and regression analysis with relevant tests were employed. The relevant results showed that some negative psychological feelings were common among older adults during the pandemic. However, the psychological feelings did not portray significant changes with time, except for sleeping disorders and overeating. Overall, older adults scored significantly different from other age groups on many challenges, concerns, and views regarding new technologies during the pandemic. No significant differences were observed regarding gender and marital status for the challenges and concerns. The research summarizes some policy guidance while noting some limitations of this study and future research directions.


Subject(s)
COVID-19 , Pandemics , Aged , Communicable Disease Control , Female , Humans , Male , Middle Aged , Quality of Life , SARS-CoV-2 , United Arab Emirates
5.
Appl Soft Comput ; 116: 108291, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1568513

ABSTRACT

The world is currently experiencing an ongoing pandemic of an infectious disease named coronavirus disease 2019 (i.e., COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Computed Tomography (CT) plays an important role in assessing the severity of the infection and can also be used to identify those symptomatic and asymptomatic COVID-19 carriers. With a surge of the cumulative number of COVID-19 patients, radiologists are increasingly stressed to examine the CT scans manually. Therefore, an automated 3D CT scan recognition tool is highly in demand since the manual analysis is time-consuming for radiologists and their fatigue can cause possible misjudgment. However, due to various technical specifications of CT scanners located in different hospitals, the appearance of CT images can be significantly different leading to the failure of many automated image recognition approaches. The multi-domain shift problem for the multi-center and multi-scanner studies is therefore nontrivial that is also crucial for a dependable recognition and critical for reproducible and objective diagnosis and prognosis. In this paper, we proposed a COVID-19 CT scan recognition model namely coronavirus information fusion and diagnosis network (CIFD-Net) that can efficiently handle the multi-domain shift problem via a new robust weakly supervised learning paradigm. Our model can resolve the problem of different appearance in CT scan images reliably and efficiently while attaining higher accuracy compared to other state-of-the-art methods.

6.
Front Immunol ; 12: 730099, 2021.
Article in English | MEDLINE | ID: covidwho-1551499

ABSTRACT

SARS-CoV-2 infects humans and causes Coronavirus disease 2019 (COVID-19). The S1 domain of the spike glycoprotein of SARS-CoV-2 binds to human angiotensin-converting enzyme 2 (hACE2) via its receptor-binding domain, while the S2 domain facilitates fusion between the virus and the host cell membrane for entry. The spike glycoprotein of circulating SARS-CoV-2 genomes is a mutation hotspot. Some mutations may affect the binding affinity for hACE2, while others may modulate S-glycoprotein expression, or they could result in a virus that can escape from antibodies generated by infection with the original variant or by vaccination. Since a large number of variants are emerging, it is of vital importance to be able to rapidly assess their characteristics: while changes of binding affinity alone do not always cause direct advantages for the virus, they still can provide important insights on where the evolutionary pressure is directed. Here, we propose a simple and cost-effective computational protocol based on Molecular Dynamics simulations to rapidly screen the ability of mutated spike protein to bind to the hACE2 receptor and selected neutralizing biomolecules. Our results show that it is possible to achieve rapid and reliable predictions of binding affinities. A similar approach can be used to perform preliminary screenings of the potential effects of S-RBD mutations, helping to prioritize the more time-consuming and expensive experimental work.

7.
Adv Sci (Weinh) ; : e2102181, 2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1487434

ABSTRACT

Combinatorial antibody libraries not only effectively reduce antibody discovery to a numbers game, but enable documentation of the history of antibody responses in an individual. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has prompted a wider application of this technology to meet the public health challenge of pandemic threats in the modern era. Herein, a combinatorial human antibody library constructed 20 years before the coronavirus disease 2019 (COVID-19) pandemic is used to discover three highly potent antibodies that selectively bind SARS-CoV-2 spike protein and neutralize authentic SARS-CoV-2 virus. Compared to neutralizing antibodies from COVID-19 patients with generally low somatic hypermutation (SHM), these three antibodies contain over 13-22 SHMs, many of which are involved in specific interactions in their crystal structures with SARS-CoV-2 spike receptor binding domain. The identification of these somatically mutated antibodies in a pre-pandemic library raises intriguing questions about the origin and evolution of these antibodies with respect to their reactivity with SARS-CoV-2.

8.
Transp Res E Logist Transp Rev ; 154: 102457, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1377849

ABSTRACT

The Covid-19 pandemic has dramatically changed consumer purchase behavior, and the "stay-at-home order" policy has altered the operations of brick-and-mortar (B&M) retail stores. These changes have induced local B&M retailers to start online retailing with home delivery as an added option. B&M retailers can choose to offer online retailing on their own (referred to as self-building mode) or via a third-party online-to-offline (O2O) platform (referred to as platform mode). This paper investigates how the interplay between capacity, pricing, and online retailing mode is affected by the absence/presence of the pandemic. We characterize the equilibrium between the B&M retailer and the O2O platform provider. We find that the impact of the "stay-at-home orders" on B&M retailers differs by the online retailing mode. Interestingly, we find that the "stay-at-home orders" does not necessarily lower the B&M retailer's profit if they engage in online retailing. Under self-building mode, the stay-at-home order leaves the B&M retailer with just the online channel. We identify the threshold delivery cost above (below) which the B&M retailer's profit is lower (higher) than before. Under the platform mode, the "stay-at-home order" alters the retailer's sales channel from dual channel to single channel, which mitigates the competition between the retailer and the O2O platform. The retailer's profit increases if it has sufficiently high capacity. Finally, we extend the model to examine the effect of a "reopening policy" with a government subsidy. We find that although the subsidy improves the B&M retailer's profitability, it may hurt the consumer surplus under some conditions. We suggest that governments take the B&M retailer's capacity and operations mode into account when designing subsidy policies.

9.
Vaccines (Basel) ; 9(8)2021 Aug 09.
Article in English | MEDLINE | ID: covidwho-1348705

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the urgent need for effective prophylactic vaccination to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Intranasal vaccination is an attractive strategy to prevent COVID-19 as the nasal mucosa represents the first-line barrier to SARS-CoV-2 entry. The current intramuscular vaccines elicit systemic immunity but not necessarily high-level mucosal immunity. Here, we tested a single intranasal dose of our candidate adenovirus type 5-vectored vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (AdCOVID) in inbred, outbred, and transgenic mice. A single intranasal vaccination with AdCOVID elicited a strong and focused immune response against RBD through the induction of mucosal IgA in the respiratory tract, serum neutralizing antibodies, and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile. A single AdCOVID dose resulted in immunity that was sustained for over six months. Moreover, a single intranasal dose completely protected K18-hACE2 mice from lethal SARS-CoV-2 challenge, preventing weight loss and mortality. These data show that AdCOVID promotes concomitant systemic and mucosal immunity and represents a promising vaccine candidate.

10.
Journal of Advanced Research ; 2021.
Article in English | ScienceDirect | ID: covidwho-1330938

ABSTRACT

Introduction The SARS-CoV-2 pandemic has endangered global health, the world economy, and societal values. Despite intensive measures taken around the world, morbidity and mortality remain high as many countries face new waves of infection and the spread of new variants. Worryingly, more and more variants are now being identified, such as 501Y.V1 (B.1.1.7) in the UK, 501Y.V2 (B.1.351) in South Africa, 501Y.V3 in Manaus, Brazil, and B.1.617/B.1.618 in India, which could lead to a severe epidemic rebound. Moreover, some variants have a stronger immune escape ability. To control the new SARS-CoV-2 variant, we may need to develop and redesign new vaccines repeatedly. So it is important to investigate how our immune system combats and responds to SARS-CoV-2 infection to develop safe and effective medical interventions. Objectives In this study, we performed a longitudinal and proteome-wide analysis of antibodies in the COVID-19 patients to revealed some immune processes of COVID-19 patients against SARS-CoV-2 and found some dominant epitopes of a potential vaccine. Methods Microarray assay, Antibody depletion assays, Neutralization assay Results We profiled a B-cell linear epitope landscape of SARS-CoV-2 and identified the epitopes specifically recognized by either IgM, IgG, or IgA. We found that epitopes more frequently recognized by IgM are enriched in non-structural proteins. We further identified epitopes with different immune responses in severe and mild patients. Moreover, we identified 12 dominant epitopes eliciting antibodies in most COVID-19 patients and identified five key amino acids of epitopes. Furthermore, we found epitope S-82 and S-15 are perfect immunogenic peptides and should be considered in vaccine design. Conclusion This data provide useful information and rich resources for improving our understanding of viral infection and developing a novel vaccine/neutralizing antibodies for the treatment of SARS-CoV-2.

11.
Int J Neural Syst ; 31(10): 2150037, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1325168

ABSTRACT

Single image super-resolution (SISR) aims to obtain a high-resolution output from one low-resolution image. Currently, deep learning-based SISR approaches have been widely discussed in medical image processing, because of their potential to achieve high-quality, high spatial resolution images without the cost of additional scans. However, most existing methods are designed for scale-specific SR tasks and are unable to generalize over magnification scales. In this paper, we propose an approach for medical image arbitrary-scale super-resolution (MIASSR), in which we couple meta-learning with generative adversarial networks (GANs) to super-resolve medical images at any scale of magnification in [Formula: see text]. Compared to state-of-the-art SISR algorithms on single-modal magnetic resonance (MR) brain images (OASIS-brains) and multi-modal MR brain images (BraTS), MIASSR achieves comparable fidelity performance and the best perceptual quality with the smallest model size. We also employ transfer learning to enable MIASSR to tackle SR tasks of new medical modalities, such as cardiac MR images (ACDC) and chest computed tomography images (COVID-CT). The source code of our work is also public. Thus, MIASSR has the potential to become a new foundational pre-/post-processing step in clinical image analysis tasks such as reconstruction, image quality enhancement, and segmentation.


Subject(s)
COVID-19 , Algorithms , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , SARS-CoV-2
12.
Front Med (Lausanne) ; 8: 699984, 2021.
Article in English | MEDLINE | ID: covidwho-1291051

ABSTRACT

The rapid spread of coronavirus 2019 disease (COVID-19) has manifested a global public health crisis, and chest CT has been proven to be a powerful tool for screening, triage, evaluation and prognosis in COVID-19 patients. However, CT is not only costly but also associated with an increased incidence of cancer, in particular for children. This study will question whether clinical symptoms and laboratory results can predict the CT outcomes for the pediatric patients with positive RT-PCR testing results in order to determine the necessity of CT for such a vulnerable group. Clinical data were collected from 244 consecutive pediatric patients (16 years of age and under) treated at Wuhan Children's Hospital with positive RT-PCR testing, and the chest CT were performed within 3 days of clinical data collection, from January 21 to March 8, 2020. This study was approved by the local ethics committee of Wuhan Children's Hospital. Advanced decision tree based machine learning models were developed for the prediction of CT outcomes. Results have shown that age, lymphocyte, neutrophils, ferritin and C-reactive protein are the most related clinical indicators for predicting CT outcomes for pediatric patients with positive RT-PCR testing. Our decision support system has managed to achieve an AUC of 0.84 with 0.82 accuracy and 0.84 sensitivity for predicting CT outcomes. Our model can effectively predict CT outcomes, and our findings have indicated that the use of CT should be reconsidered for pediatric patients, as it may not be indispensable.

13.
J Clin Microbiol ; 59(8): e0007921, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1218187

ABSTRACT

While China experienced a peak and decline in coronavirus disease 2019 (COVID-19) cases at the start of 2020, regional outbreaks continuously emerged in subsequent months. Resurgences of COVID-19 have also been observed in many other countries. In Guangzhou, China, a small outbreak, involving less than 100 residents, emerged in March and April 2020, and comprehensive and near-real-time genomic surveillance of SARS-CoV-2 was conducted. When the numbers of confirmed cases among overseas travelers increased, public health measures were enhanced by shifting from self-quarantine to central quarantine and SARS-CoV-2 testing for all overseas travelers. In an analysis of 109 imported cases, we found diverse viral variants distributed in the global viral phylogeny, which were frequently shared within households but not among passengers on the same flight. In contrast to the viral diversity of imported cases, local transmission was predominately attributed to two specific variants imported from Africa, including local cases that reported no direct or indirect contact with imported cases. The introduction events of the virus were identified or deduced before the enhanced measures were taken. These results show the interventions were effective in containing the spread of SARS-CoV-2, and they rule out the possibility of cryptic transmission of viral variants from the first wave in January and February 2020. Our study provides evidence and emphasizes the importance of controls for overseas travelers in the context of the pandemic and exemplifies how viral genomic data can facilitate COVID-19 surveillance and inform public health mitigation strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Africa , COVID-19 Testing , China/epidemiology , Genomics , Humans
14.
Sci Robot ; 6(52)2021 03 31.
Article in English | MEDLINE | ID: covidwho-1209822

ABSTRACT

The world was unprepared for the COVID-19 pandemic, and recovery is likely to be a long process. Robots have long been heralded to take on dangerous, dull, and dirty jobs, often in environments that are unsuitable for humans. Could robots be used to fight future pandemics? We review the fundamental requirements for robotics for infectious disease management and outline how robotic technologies can be used in different scenarios, including disease prevention and monitoring, clinical care, laboratory automation, logistics, and maintenance of socioeconomic activities. We also address some of the open challenges for developing advanced robots that are application oriented, reliable, safe, and rapidly deployable when needed. Last, we look at the ethical use of robots and call for globally sustained efforts in order for robots to be ready for future outbreaks.


Subject(s)
Communicable Disease Control/trends , Communicable Diseases , Robotics/trends , COVID-19/prevention & control , Communicable Diseases/diagnosis , Communicable Diseases/therapy , Disinfection/trends , Humans , Machine Learning , Pandemics/prevention & control , Remote Sensing Technology/trends , Robotic Surgical Procedures/trends , Robotics/instrumentation , SARS-CoV-2 , User-Computer Interface
15.
Top Curr Chem (Cham) ; 379(3): 23, 2021 Apr 22.
Article in English | MEDLINE | ID: covidwho-1196651

ABSTRACT

Coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still a pandemic around the world. Currently, specific antiviral drugs to control the epidemic remain deficient. Understanding the details of SARS-CoV-2 structural biology is extremely important for development of antiviral agents that will enable regulation of its life cycle. This review focuses on the structural biology and medicinal chemistry of various key proteins (Spike, ACE2, TMPRSS2, RdRp and Mpro) in the life cycle of SARS-CoV-2, as well as their inhibitors/drug candidates. Representative broad-spectrum antiviral drugs, especially those against the homologous virus SARS-CoV, are summarized with the expectation they will drive the development of effective, broad-spectrum inhibitors against coronaviruses. We are hopeful that this review will be a useful aid for discovery of novel, potent anti-SARS-CoV-2 drugs with excellent therapeutic results in the near future.


Subject(s)
Antiviral Agents/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Viral Matrix Proteins/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Drug Repositioning , Humans , SARS-CoV-2/isolation & purification , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Viral Matrix Proteins/metabolism , Virus Internalization/drug effects
16.
Drug Discov Today ; 26(10): 2358-2366, 2021 10.
Article in English | MEDLINE | ID: covidwho-1193286

ABSTRACT

The infectious disease Coronavirus 2019 (COVID-19) continues to cause a global pandemic and, thus, the need for effective therapeutics remains urgent. Global research targeting COVID-19 treatments has produced numerous therapy-related data and established data repositories. However, these data are disseminated throughout the literature and web resources, which could lead to a reduction in the levels of their use. In this review, we introduce resource repositories for the development of COVID-19 therapeutics, from the genome and proteome to antiviral drugs, vaccines, and monoclonal antibodies. We briefly describe the data and usage, and how they advance research for therapies. Finally, we discuss the opportunities and challenges to preventing the pandemic from developing further.


Subject(s)
COVID-19/drug therapy , Drug Discovery/trends , Internet/trends , Animals , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/therapeutic use , Big Data , COVID-19 Vaccines/therapeutic use , Computational Biology , Humans
18.
Sci Robot ; 6(50)2021 01 20.
Article in English | MEDLINE | ID: covidwho-1091000

ABSTRACT

In a time of upheaval, robotics has an opportunity to offer long-term solutions and radical change.


Subject(s)
COVID-19 , Communicable Diseases , Robotics , Humans , Public Health , SARS-CoV-2
19.
Biotechnol J ; 16(6): e2100040, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1086281

ABSTRACT

Detection of pathogens with single-nucleotide variations is indispensable for the disease tracing, but remains technically challenging. The D614G mutation in the SARS-CoV-2 spike protein is known to markedly enhance viral infectivity but is difficult to detect. Here, we report an effective approach called "synthetic mismatch integrated crRNA guided Cas12a detection" (symRNA-Cas12a) to detect the D614 and G614 variants effectively. Using this method, we systemically screened a pool of crRNAs that contain all the possible nucleotide substitutions covering the -2 to +2 positions around the mutation and identify one crRNA that can efficiently increase the detection specificity by 13-fold over the ancestral crRNA. With this selected crRNA, the symRNA-Cas12a assay can detect as low as 10 copies of synthetic mutant RNA and the results are confirmed to be accurate by Sanger sequencing. Overall, we have developed the symRNA-Cas12a method to specifically, sensitively and rapidly detect the SARS-CoV-2 D614G mutation.


Subject(s)
COVID-19 , RNA, Guide , CRISPR-Cas Systems , Humans , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
20.
Cell Rep ; 34(4): 108666, 2021 01 26.
Article in English | MEDLINE | ID: covidwho-1064915

ABSTRACT

Although vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are under development, the antigen epitopes on the virus and their immunogenicity are poorly understood. Here, we simulate the 3D structures and predict the B cell epitopes on the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins of SARS-CoV-2 using structure-based approaches and validate epitope immunogenicity by immunizing mice. Almost all 33 predicted epitopes effectively induce antibody production, six of these are immunodominant epitopes in individuals, and 23 are conserved within SARS-CoV-2, SARS-CoV, and bat coronavirus RaTG13. We find that the immunodominant epitopes of individuals with domestic (China) SARS-CoV-2 are different from those of individuals with imported (Europe) SARS-CoV-2, which may be caused by mutations on the S (G614D) and N proteins. Importantly, we find several epitopes on the S protein that elicit neutralizing antibodies against D614 and G614 SARS-CoV-2, which can contribute to vaccine design against coronaviruses.


Subject(s)
Coronavirus Nucleocapsid Proteins/immunology , Epitopes, B-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Matrix Proteins/immunology , Viroporin Proteins/immunology , Adolescent , Adult , Aged , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19 Vaccines/immunology , Child , Epitopes, B-Lymphocyte/metabolism , Female , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...