Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Nat Commun ; 14(1): 2678, 2023 05 09.
Article in English | MEDLINE | ID: covidwho-2316451

ABSTRACT

Mucosal immunity plays a significant role in the first-line defense against viruses transmitted and infected through the respiratory system, such as SARS-CoV-2. However, the lack of effective and safe adjuvants currently limits the development of COVID-19 mucosal vaccines. In the current study, we prepare an intranasal vaccine containing cationic crosslinked carbon dots (CCD) and a SARS-CoV-2 antigen, RBD-HR with spontaneous antigen particlization. Intranasal immunization with CCD/RBD-HR induces high levels of antibodies with broad-spectrum neutralization against authentic viruses/pseudoviruses of Omicron-included variants and protects immunized female BALB/c mice from Omicron infection. Despite strong systemic cellular immune response stimulation, the intranasal CCD/RBD-HR vaccine also induces potent mucosal immunity as determined by the generation of tissue-resident T cells in the lungs and airway. Moreover, CCD/RBD-HR not only activates professional antigen-presenting cells (APCs), dendritic cells, but also effectively targets nasal epithelial cells, promotes antigen binding via sialic acid, and surprisingly provokes the antigen-presenting of nasal epithelial cells. We demonstrate that CCD is a promising intranasal vaccine adjuvant for provoking strong mucosal immunity and might be a candidate adjuvant for intranasal vaccine development for many types of infectious diseases, including COVID-19.


Subject(s)
COVID-19 , Vaccines , Female , Animals , Mice , Humans , SARS-CoV-2 , COVID-19/prevention & control , Adjuvants, Immunologic , COVID-19 Vaccines , Carbon , Cations
2.
MedComm ; 4(3), 2023.
Article in English | EuropePMC | ID: covidwho-2296307

ABSTRACT

The XBB.1.5 subvariant has drawn great attention owing to its exceptionality in immune evasion and transmissibility. Therefore, it is essential to develop a universally protective coronavirus disease 2019 vaccine against various strains of Omicron, especially XBB.1.5. In this study, we evaluated and compared the immune responses induced by six different spike protein vaccines targeting the ancestral or various Omicron strains of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) in mice. We found that spike‐wild‐type immunization induced high titers of neutralizing antibodies (NAbs) against ancestral SARS‐CoV‐2. However, its activity in neutralizing Omicron subvariants decreased sharply as the number of mutations in receptor‐binding domain (RBD) of these viruses increased. Spike‐BA.5, spike‐BF.7, and spike‐BQ.1.1 vaccines induced strong NAbs against BA.5, BF.7, BQ.1, and BQ.1.1 viruses but were poor in protecting against XBB and XBB.1.5, which have more RBD mutations. In sharp contrast, spike‐XBB.1.5 vaccination can activate strong and broadly protective immune responses against XBB.1.5 and other common subvariants of Omicron. By performing correlation analysis, we found that the NAbs titers were negatively correlated with the number of RBD mutations in the Omicron subvariants. Vaccines with more RBD mutations can effectively overcome the immune resistance caused by the accumulation of RBD mutations, making spike‐XBB.1.5 the most promising vaccine candidate against universal Omicron variants.

3.
MedComm ; 4(2), 2023.
Article in English | EuropePMC | ID: covidwho-2276096

ABSTRACT

BA.4 and BA.5 (BA.4/5), the subvariants of Omicron, are more transmissible than BA.1 with more robust immune evasion capability because of its unique spike protein mutations. In light of such situation, the vaccination against severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is in desperate need of the third booster. It has been reported that heterologous boosters might produce more effective immunity against wild‐type SARS‐CoV‐2 and the variants. Additionally, the third heterologous protein subunit booster should be considered potentially. In the present study, we prepared a Delta full‐length spike protein sequence‐based mRNA vaccine as the "priming” shot and developed a recombinant trimeric receptor‐binding domain (RBD) protein vaccine referred to as RBD–HR/trimer as a third heterologous booster. Compared to the homologous mRNA group, the heterologous group (RBD–HR/trimer vaccine primed with two mRNA vaccines) induced higher neutralizing antibody titers against BA.4/5‐included SARS‐CoV‐2 variants. In addition, heterologous vaccination exhibited stronger cellular immune response and long‐lasting memory response than the homologous mRNA vaccine. In conclusion, a third heterologous boosting with RBD–HR/trimer following two‐dose mRNA priming vaccination should be a superior strategy than a third homologous mRNA vaccine. The RBD–HR/trimer vaccine becomes an appropriate candidate for a booster immune injection. We prepared a Delta full‐length spike protein sequence‐based mRNA vaccine (Figure A, B) and developed a recombinant trimeric receptor‐binding domain (RBD) protein vaccine (Figure C). Later, the mRNA vaccine was injected as the "priming” shot, and the RBD–HR/trimer vaccine was used as a third heterologous booster (Figure D).

4.
MedComm (2020) ; 4(2): e238, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2276095

ABSTRACT

BA.4 and BA.5 (BA.4/5), the subvariants of Omicron, are more transmissible than BA.1 with more robust immune evasion capability because of its unique spike protein mutations. In light of such situation, the vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in desperate need of the third booster. It has been reported that heterologous boosters might produce more effective immunity against wild-type SARS-CoV-2 and the variants. Additionally, the third heterologous protein subunit booster should be considered potentially. In the present study, we prepared a Delta full-length spike protein sequence-based mRNA vaccine as the "priming" shot and developed a recombinant trimeric receptor-binding domain (RBD) protein vaccine referred to as RBD-HR/trimer as a third heterologous booster. Compared to the homologous mRNA group, the heterologous group (RBD-HR/trimer vaccine primed with two mRNA vaccines) induced higher neutralizing antibody titers against BA.4/5-included SARS-CoV-2 variants. In addition, heterologous vaccination exhibited stronger cellular immune response and long-lasting memory response than the homologous mRNA vaccine. In conclusion, a third heterologous boosting with RBD-HR/trimer following two-dose mRNA priming vaccination should be a superior strategy than a third homologous mRNA vaccine. The RBD-HR/trimer vaccine becomes an appropriate candidate for a booster immune injection.

5.
Med Res Rev ; 43(4): 932-971, 2023 07.
Article in English | MEDLINE | ID: covidwho-2262534

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic can hardly end with the emergence of different variants over time. In the past 2 years, several variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), such as the Delta and Omicron variants, have emerged with higher transmissibility, immune evasion and drug resistance, leading to higher morbidity and mortality in the population. The prevalent variants of concern (VOCs) share several mutations on the spike that can affect virus characteristics, including transmissibility, antigenicity, and immune evasion. Increasing evidence has demonstrated that the neutralization capacity of sera from COVID-19 convalescent or vaccinated individuals is decreased against SARS-CoV-2 variants. Moreover, the vaccine effectiveness of current COVID-19 vaccines against SARS-CoV-2 VOCs is not as high as that against wild-type SARS-CoV-2. Therefore, more attention might be paid to how the mutations impact vaccine effectiveness. In this review, we summarized the current studies on the mutations of the SARS-CoV-2 spike, particularly of the receptor binding domain, to elaborate on how the mutations impact the infectivity, transmissibility and immune evasion of the virus. The effects of mutations in the SARS-CoV-2 spike on the current therapeutics were highlighted, and potential strategies for future vaccine development were suggested.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Vaccine Development , Mutation
6.
Mol Biomed ; 4(1): 9, 2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2262503

ABSTRACT

The current Coronavirus Disease 2019 (COVID-19) pandemic, induced by newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants, posed great threats to global public health security. There is an urgent need to design effective next­generation vaccines against Omicron lineages. Here, we investigated the immunogenic capacity of the vaccine candidate based on the receptor binding domain (RBD). An RBDß-HR self-assembled trimer vaccine including RBD of Beta variant (containing K417, E484 and N501) and heptad repeat (HR) subunits was developed using an insect cell expression platform. Sera obtained from immunized mice effectively blocked RBD-human angiotensin-converting enzyme 2 (hACE2) binding for different viral variants, showing robust inhibitory activity. In addition, RBDß-HR/trimer vaccine durably exhibited high titers of specific binding antibodies and high levels of cross-protective neutralizing antibodies against newly emerging Omicron lineages, as well as other major variants including Alpha, Beta, and Delta. Consistently, the vaccine also promoted a broad and potent cellular immune response involving the participation of T follicular helper (Tfh) cells, germinal center (GC) B cells, activated T cells, effector memory T cells, and central memory T cells, which are critical facets of protective immunity. These results demonstrated that RBDß-HR/trimer vaccine candidates provided an attractive next-generation vaccine strategy against Omicron variants in the global effort to halt the spread of SARS-CoV-2.

7.
Signal Transduct Target Ther ; 7(1): 399, 2022 12 24.
Article in English | MEDLINE | ID: covidwho-2234645

ABSTRACT

For coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 15-30% of patients are likely to develop COVID-19-related acute respiratory distress syndrome (ARDS). There are still few effective and well-understood therapies available. Novel variants and short-lasting immunity are posing challenges to vaccine efficacy, so finding antiviral and antiinflammatory treatments remains crucial. Here, tripterin (TP), a traditional Chinese medicine, was encapsulated into liposome (TP lipo) to investigate its antiviral and antiinflammatory effects in severe COVID-19. By using two severe COVID-19 models in human ACE2-transgenic (hACE2) mice, an analysis of TP lipo's effects on pulmonary immune responses was conducted. Pulmonary pathological alterations and viral burden were reduced by TP lipo treatment. TP lipo inhibits SARS-CoV-2 replication and hyperinflammation in infected cells and mice, two crucial events in severe COVID-19 pathophysiology, it is a promising drug candidate to treat SARS-CoV-2-induced ARDS.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Animals , Mice , SARS-CoV-2 , Liposomes , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Respiratory Distress Syndrome/drug therapy
8.
Nat Commun ; 13(1): 5459, 2022 09 17.
Article in English | MEDLINE | ID: covidwho-2036822

ABSTRACT

The recently emerged Omicron (B.1.1.529) variant has rapidly surpassed Delta to become the predominant circulating SARS-CoV-2 variant, given the higher transmissibility rate and immune escape ability, resulting in breakthrough infections in vaccinated individuals. A new generation of SARS-CoV-2 vaccines targeting the Omicron variant are urgently needed. Here, we developed a subunit vaccine named RBD-HR/trimer by directly linking the sequence of RBD derived from the Delta variant (containing L452R and T478K) and HR1 and HR2 in SARS-CoV-2 S2 subunit in a tandem manner, which can self-assemble into a trimer. In multiple animal models, vaccination of RBD-HR/trimer formulated with MF59-like oil-in-water adjuvant elicited sustained humoral immune response with high levels of broad-spectrum neutralizing antibodies against Omicron variants, also inducing a strong T cell immune response in vivo. In addition, our RBD-HR/trimer vaccine showed a strong boosting effect against Omicron variants after two doses of mRNA vaccines, featuring its capacity to be used in a prime-boost regimen. In mice and non-human primates, RBD-HR/trimer vaccination could confer a complete protection against live virus challenge of Omicron and Delta variants. The results qualified RBD-HR/trimer vaccine as a promising next-generation vaccine candidate for prevention of SARS-CoV-2, which deserved further evaluation in clinical trials.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , Protein Subunits , SARS-CoV-2 , Vaccines, Subunit , Water
9.
Cell Mol Immunol ; 19(5): 577-587, 2022 05.
Article in English | MEDLINE | ID: covidwho-1830043

ABSTRACT

Neutrophil extracellular traps (NETs) can capture and kill viruses, such as influenza viruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), thus contributing to host defense. Contrary to our expectation, we show here that the histones released by NETosis enhance the infectivity of SARS-CoV-2, as found by using live SARS-CoV-2 and two pseudovirus systems as well as a mouse model. The histone H3 or H4 selectively binds to subunit 2 of the spike (S) protein, as shown by a biochemical binding assay, surface plasmon resonance and binding energy calculation as well as the construction of a mutant S protein by replacing four acidic amino acids. Sialic acid on the host cell surface is the key molecule to which histones bridge subunit 2 of the S protein. Moreover, histones enhance cell-cell fusion. Finally, treatment with an inhibitor of NETosis, histone H3 or H4, or sialic acid notably affected the levels of sgRNA copies and the number of apoptotic cells in a mouse model. These findings suggest that SARS-CoV-2 could hijack histones from neutrophil NETosis to promote its host cell attachment and entry process and may be important in exploring pathogenesis and possible strategies to develop new effective therapies for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Histones , Mice , N-Acetylneuraminic Acid , Protein Subunits/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
11.
Signal Transduct Target Ther ; 6(1): 439, 2021 12 24.
Article in English | MEDLINE | ID: covidwho-1585883

ABSTRACT

The development of animal models for COVID-19 is essential for basic research and drug/vaccine screening. Previously reported COVID-19 animal models need to be established under a high biosafety level condition for the utilization of live SARS-CoV-2, which greatly limits its application in routine research. Here, we generate a mouse model of COVID-19 under a general laboratory condition that captures multiple characteristics of SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) observed in humans. Briefly, human ACE2-transgenic (hACE2) mice were intratracheally instilled with the formaldehyde-inactivated SARS-CoV-2, resulting in a rapid weight loss and detrimental changes in lung structure and function. The pulmonary pathologic changes were characterized by diffuse alveolar damage with pulmonary consolidation, hemorrhage, necrotic debris, and hyaline membrane formation. The production of fatal cytokines (IL-1ß, TNF-α, and IL-6) and the infiltration of activated neutrophils, inflammatory monocyte-macrophages, and T cells in the lung were also determined, suggesting the activation of an adaptive immune response. Therapeutic strategies, such as dexamethasone or passive antibody therapy, could effectively ameliorate the disease progression in this model. Therefore, the established mouse model for SARS-CoV-2-induced ARDS in the current study may provide a robust tool for researchers in the standard open laboratory to investigate the pathological mechanisms or develop new therapeutic strategies for COVID-19 and ARDS.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Lung/immunology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Respiratory Distress Syndrome/genetics
12.
MedComm ; 2021.
Article in English | EuropePMC | ID: covidwho-1567359

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is the etiology of coronavirus disease 2019 (COVID‐19) pandemic. Current variants including Alpha, Beta, Gamma, Delta, and Lambda increase the capacity of infection and transmission of SARS‐CoV‐2, which might disable the in‐used therapies and vaccines. The COVID‐19 has now put an enormous strain on health care system all over the world. Therefore, the development of animal models that can capture characteristics and immune responses observed in COVID‐19 patients is urgently needed. Appropriate models could accelerate the testing of therapeutic drugs and vaccines against SARS‐CoV‐2. In this review, we aim to summarize the current animal models for SARS‐CoV‐2 infection, including mice, hamsters, nonhuman primates, and ferrets, and discuss the details of transmission, pathology, and immunology induced by SARS‐CoV‐2 in these animal models. We hope this could throw light to the increased usefulness in fundamental studies of COVID‐19 and the preclinical analysis of vaccines and therapeutic agents. Animal models that recapitulate characteristics and immune responses observed in COVID‐19 patients are urgently needed. These animal models such as mouse, hamster, nonhuman primate, and ferret, have provided robust platforms for studying the transmission, pathogenesis, and immunology induced by SARS‐CoV‐2, and for evaluating the immunomodulatory and antiviral drugs and vaccines against COVID‐19.

13.
Signal Transduct Target Ther ; 6(1): 343, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1415924

ABSTRACT

SARS-CoV-2 recognizes, via its spike receptor-binding domain (S-RBD), human angiotensin-converting enzyme 2 (ACE2) to initiate infection. Ecto-domain protein of ACE2 can therefore function as a decoy. Here we show that mutations of S19W, T27W, and N330Y in ACE2 could individually enhance SARS-CoV-2 S-RBD binding. Y330 could be synergistically combined with either W19 or W27, whereas W19 and W27 are mutually unbeneficial. The structures of SARS-CoV-2 S-RBD bound to the ACE2 mutants reveal that the enhanced binding is mainly contributed by the van der Waals interactions mediated by the aromatic side-chains from W19, W27, and Y330. While Y330 and W19/W27 are distantly located and devoid of any steric interference, W19 and W27 are shown to orient their side-chains toward each other and to cause steric conflicts, explaining their incompatibility. Finally, using pseudotyped SARS-CoV-2 viruses, we demonstrate that these residue substitutions are associated with dramatically improved entry-inhibition efficacy toward both wild-type and antibody-resistant viruses. Taken together, our biochemical and structural data have delineated the basis for the elevated S-RBD binding associated with S19W, T27W, and N330Y mutations in ACE2, paving the way for potential application of these mutants in clinical treatment of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19 , Molecular Dynamics Simulation , Mutation, Missense , SARS-CoV-2/chemistry , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
16.
MedComm (2020) ; 2(3): 430-441, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1222647

ABSTRACT

The emerging variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in pandemic call for the urgent development of universal corona virus disease 2019 (COVID-19) vaccines which could be effective for both wild-type SARS-CoV-2 and mutant strains. In the current study, we formulated protein subunit vaccines with AS03 adjuvant and recombinant proteins of S1 subunit of SARS-CoV-2 (S1-WT) and S1 variant (K417N, E484K, N501Y, and D614G) subunit (S1-Mut), and immunized transgenic mice that express human angiotensin-converting enzyme 2 (hACE2). The S1 protein-specific antibody production and the neutralization capability for SARS-CoV-2 and B.1.351 variant were measured after immunization in mice. The results revealed that the S1-Mut antigens were more effective in inhibiting the receptor-binding domain and ACE2 binding in B.1.351 variant than in wild-type SARS-CoV-2. Furthermore, the development of a bivalent vaccine exhibited the ideal neutralization properties against wild-type and B.1.351 variant, as well as other variants. Our findings may provide a rationale for the development of a bivalent recombinant vaccine targeting the S1 protein that can induce the neutralizing antibodies against both SARS-CoV-2 variants and wild-type of the virus and may be of importance to explore the potential clinical use of bivalent recombinant vaccine in the future.

18.
J Infect ; 82(1): 126-132, 2021 01.
Article in English | MEDLINE | ID: covidwho-947286

ABSTRACT

OBJECTIVES: COVID-19 has caused a large global pandemic. Patients with COVID-19 exhibited considerable variation in disease behavior. Pervious genome-wide association studies have identified potential genetic variants involved in the risk and prognosis of COVID-19, but the underlying biological interpretation remains largely unclear. METHODS: We applied the summary data-based Mendelian randomization (SMR) method to identify genes that were pleiotropically associated with the risk and various outcomes of COVID-19, including severe respiratory confirmed COVID-19 and hospitalized COVID-19. RESULTS: In blood, we identified 2 probes, ILMN_1765146 and ILMN_1791057 tagging IFNAR2, that showed pleiotropic association with hospitalized COVID-19 (ß [SE]=0.42 [0.09], P = 4.75 × 10-06 and ß [SE]=-0.48 [0.11], P = 6.76 × 10-06, respectively). Although no other probes were significant after correction for multiple testing in both blood and lung, multiple genes as tagged by the top 5 probes were involved in inflammation or antiviral immunity, and several other tagged genes, such as PON2 and HPS5, were involved in blood coagulation. CONCLUSIONS: We identified IFNAR2 and other potential genes that could be involved in the susceptibility or prognosis of COVID-19. These findings provide important leads to a better understanding of the mechanisms of cytokine storm and venous thromboembolism in COVID-19 and potential therapeutic targets for the effective treatment of COVID-19.


Subject(s)
COVID-19/epidemiology , Genetic Variation/genetics , Genome-Wide Association Study/methods , Mendelian Randomization Analysis , SARS-CoV-2/genetics , Aryldialkylphosphatase/genetics , Blood Coagulation/genetics , COVID-19/mortality , Carrier Proteins/genetics , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Genetic Predisposition to Disease/genetics , Humans , Prognosis , Receptor, Interferon alpha-beta/genetics , Risk , Venous Thromboembolism/genetics , Venous Thromboembolism/pathology
19.
medRxiv ; 2020 Sep 04.
Article in English | MEDLINE | ID: covidwho-827840

ABSTRACT

OBJECTIVES: COVID-19 has caused a large global pandemic. Patients with COVID-19 exhibited considerable variation in disease behavior. Pervious genome-wide association studies have identified potential genetic variants involved in the risk and prognosis of COVID-19, but the underlying biological interpretation remains largely unclear. METHODS: We applied the summary data-based Mendelian randomization (SMR) method to identify genes that were pleiotropically associated with the risk and various outcomes of COVID-19, including severe respiratory confirmed COVID-19 and hospitalized COVID-19. RESULTS: In blood, we identified 2 probes, ILMN_1765146 and ILMN_1791057 tagging IFNAR2, that showed pleiotropic association with hospitalized COVID-19 (Beta; [SE]=0.42 [0.09], P=4.75E-06 and Beta; [SE]=-0.48 [0.11], P=6.76E-06, respectively). Although no other probes were significant after correction for multiple testing in both blood and lung, multiple genes as tagged by the top 5 probes were involved in inflammation or antiviral immunity, and several other tagged genes, such as PON2 and HPS5, were involved in blood coagulation. CONCLUSIONS: We identified IFNAR2 and other potential genes that could be involved in the susceptibility or prognosis of COVID-19. These findings provide important leads to a better understanding of the mechanisms of cytokine storm and venous thromboembolism in COVID-19 and potential therapeutic targets for the effective treatment of COVID-19.

20.
Nature ; 586(7830): 572-577, 2020 10.
Article in English | MEDLINE | ID: covidwho-691301

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a respiratory disease called coronavirus disease 2019 (COVID-19), the spread of which has led to a pandemic. An effective preventive vaccine against this virus is urgently needed. As an essential step during infection, SARS-CoV-2 uses the receptor-binding domain (RBD) of the spike protein to engage with the receptor angiotensin-converting enzyme 2 (ACE2) on host cells1,2. Here we show that a recombinant vaccine that comprises residues 319-545 of the RBD of the spike protein induces a potent functional antibody response in immunized mice, rabbits and non-human primates (Macaca mulatta) as early as 7 or 14 days after the injection of a single vaccine dose. The sera from the immunized animals blocked the binding of the RBD to ACE2, which is expressed on the cell surface, and neutralized infection with a SARS-CoV-2 pseudovirus and live SARS-CoV-2 in vitro. Notably, vaccination also provided protection in non-human primates to an in vivo challenge with SARS-CoV-2. We found increased levels of RBD-specific antibodies in the sera of patients with COVID-19. We show that several immune pathways and CD4 T lymphocytes are involved in the induction of the vaccine antibody response. Our findings highlight the importance of the RBD domain in the design of SARS-CoV-2 vaccines and provide a rationale for the development of a protective vaccine through the induction of antibodies against the RBD domain.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19 , COVID-19 Vaccines , Humans , Macaca mulatta/immunology , Macaca mulatta/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Animal , Models, Molecular , Protein Domains , SARS-CoV-2 , Serum/immunology , Spleen/cytology , Spleen/immunology , T-Lymphocytes/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL