Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Open Forum Infect Dis ; 9(7): ofac222, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1931883

ABSTRACT

The lower efficacy of the COVID-19 mRNA vaccines in 5-11 year old children was unexpected. Neutralizing antibody titers elicited by the vaccines in children, adolescents, and young adults suggest that the lower efficacy is not due to the lower dosage. Confirming the efficacy of these vaccines in children, determining if mRNA vaccination strategies are less effective in younger children, as well as optimizing the dosage, dosing intervals, and number of doses needed in children, adolescents, and young adults are critical to improve vaccination strategies for these populations going forward.

2.
Front Immunol ; 13: 835830, 2022.
Article in English | MEDLINE | ID: covidwho-1902993

ABSTRACT

CD8+ T cells have key protective roles in many viral infections. While an overall Th1-biased cellular immune response against SARS-CoV-2 has been demonstrated, most reports of anti-SARS-CoV-2 cellular immunity have evaluated bulk T cells using pools of predicted epitopes, without clear delineation of the CD8+ subset and its magnitude and targeting. In recently infected persons (mean 29.8 days after COVID-19 symptom onset), we confirm a Th1 bias (and a novel IL-4-producing population of unclear significance) by flow cytometry, which does not correlate to antibody responses against the receptor binding domain. Evaluating isolated CD8+ T cells in more detail by IFN-γ ELISpot assays, responses against spike, nucleocapsid, matrix, and envelope proteins average 396, 901, 296, and 0 spot-forming cells (SFC) per million, targeting 1.4, 1.5, 0.59, and 0.0 epitope regions respectively. Nucleocapsid targeting is dominant in terms of magnitude, breadth, and density of targeting. The magnitude of responses drops rapidly post-infection; nucleocapsid targeting is most sustained, and vaccination selectively boosts spike targeting. In SARS-CoV-2-naïve persons, evaluation of the anti-spike CD8+ T cell response soon after vaccination (mean 11.3 days) yields anti-spike CD8+ T cell responses averaging 2,463 SFC/million against 4.2 epitope regions, and targeting mirrors that seen in infected persons. These findings provide greater clarity on CD8+ T cell anti-SARS-CoV-2 targeting, breadth, and persistence, suggesting that nucleocapsid inclusion in vaccines could broaden coverage and durability.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Nucleocapsid/immunology , SARS-CoV-2/physiology , Antibodies, Viral/metabolism , Broadly Neutralizing Antibodies/metabolism , Cells, Cultured , Enzyme-Linked Immunospot Assay , Humans , Molecular Targeted Therapy , Peptides/genetics , Peptides/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , United States , Vaccination
3.
Lancet Respir Med ; 2022 May 23.
Article in English | MEDLINE | ID: covidwho-1864689

ABSTRACT

BACKGROUND: Baricitinib and dexamethasone have randomised trials supporting their use for the treatment of patients with COVID-19. We assessed the combination of baricitinib plus remdesivir versus dexamethasone plus remdesivir in preventing progression to mechanical ventilation or death in hospitalised patients with COVID-19. METHODS: In this randomised, double-blind, double placebo-controlled trial, patients were enrolled at 67 trial sites in the USA (60 sites), South Korea (two sites), Mexico (two sites), Singapore (two sites), and Japan (one site). Hospitalised adults (≥18 years) with COVID-19 who required supplemental oxygen administered by low-flow (≤15 L/min), high-flow (>15 L/min), or non-invasive mechanical ventilation modalities who met the study eligibility criteria (male or non-pregnant female adults ≥18 years old with laboratory-confirmed SARS-CoV-2 infection) were enrolled in the study. Patients were randomly assigned (1:1) to receive either baricitinib, remdesivir, and placebo, or dexamethasone, remdesivir, and placebo using a permuted block design. Randomisation was stratified by study site and baseline ordinal score at enrolment. All patients received remdesivir (≤10 days) and either baricitinib (or matching oral placebo) for a maximum of 14 days or dexamethasone (or matching intravenous placebo) for a maximum of 10 days. The primary outcome was the difference in mechanical ventilation-free survival by day 29 between the two treatment groups in the modified intention-to-treat population. Safety analyses were done in the as-treated population, comprising all participants who received one dose of the study drug. The trial is registered with ClinicalTrials.gov, NCT04640168. FINDINGS: Between Dec 1, 2020, and April 13, 2021, 1047 patients were assessed for eligibility. 1010 patients were enrolled and randomly assigned, 516 (51%) to baricitinib plus remdesivir plus placebo and 494 (49%) to dexamethasone plus remdesivir plus placebo. The mean age of the patients was 58·3 years (SD 14·0) and 590 (58%) of 1010 patients were male. 588 (58%) of 1010 patients were White, 188 (19%) were Black, 70 (7%) were Asian, and 18 (2%) were American Indian or Alaska Native. 347 (34%) of 1010 patients were Hispanic or Latino. Mechanical ventilation-free survival by day 29 was similar between the study groups (Kaplan-Meier estimates of 87·0% [95% CI 83·7 to 89·6] in the baricitinib plus remdesivir plus placebo group and 87·6% [84·2 to 90·3] in the dexamethasone plus remdesivir plus placebo group; risk difference 0·6 [95% CI -3·6 to 4·8]; p=0·91). The odds ratio for improved status in the dexamethasone plus remdesivir plus placebo group compared with the baricitinib plus remdesivir plus placebo group was 1·01 (95% CI 0·80 to 1·27). At least one adverse event occurred in 149 (30%) of 503 patients in the baricitinib plus remdesivir plus placebo group and 179 (37%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 7·5% [1·6 to 13·3]; p=0·014). 21 (4%) of 503 patients in the baricitinib plus remdesivir plus placebo group had at least one treatment-related adverse event versus 49 (10%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 6·0% [2·8 to 9·3]; p=0·00041). Severe or life-threatening grade 3 or 4 adverse events occurred in 143 (28%) of 503 patients in the baricitinib plus remdesivir plus placebo group and 174 (36%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 7·7% [1·8 to 13·4]; p=0·012). INTERPRETATION: In hospitalised patients with COVID-19 requiring supplemental oxygen by low-flow, high-flow, or non-invasive ventilation, baricitinib plus remdesivir and dexamethasone plus remdesivir resulted in similar mechanical ventilation-free survival by day 29, but dexamethasone was associated with significantly more adverse events, treatment-related adverse events, and severe or life-threatening adverse events. A more individually tailored choice of immunomodulation now appears possible, where side-effect profile, ease of administration, cost, and patient comorbidities can all be considered. FUNDING: National Institute of Allergy and Infectious Diseases.

4.
Clin Infect Dis ; 2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-1806304

ABSTRACT

In an exploratory trial treating "long COVID" with the CCR5-binding antibody leronlimab, we observed significantly increased blood cell surface CCR5 in treated symptomatic responders but not in nonresponders or placebo-treated participants. These findings suggest an unexpected mechanism of abnormal immune downmodulation in some persons that is normalized by leronlimab. Clinical Trials Registration. NCT04678830.

5.
Clin Infect Dis ; 74(7): 1260-1264, 2022 04 09.
Article in English | MEDLINE | ID: covidwho-1702505

ABSTRACT

This post hoc analysis of the Adaptive Coronavirus Disease 2019 (COVID-19) Treatment Trial-1 (ACTT-1) shows a treatment effect of remdesivir (RDV) on progression to invasive mechanical ventilation (IMV) or death. Additionally, we create a risk profile that better predicts progression than baseline oxygen requirement alone. The highest risk group derives the greatest treatment effect from RDV.


Subject(s)
COVID-19 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Clinical Trials as Topic , Humans , Respiration, Artificial , SARS-CoV-2
6.
Clin Infect Dis ; 73(11): e4082-e4089, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1559187

ABSTRACT

BACKGROUND: Leronlimab, a monoclonal antibody blocker of C-C chemokine receptor type 5 originally developed to treat human immunodeficiency virus infection, was administered as an open-label compassionate-use therapeutic for coronavirus disease 2019 (COVID-19). METHODS: Twenty-three hospitalized severe/critical COVID-19 patients received 700 mg leronlimab subcutaneously, repeated after 7 days in 17 of 23 patients still hospitalized. Eighteen of 23 received other experimental treatments, including convalescent plasma, hydroxychloroquine, steroids, and/or tocilizumab. Five of 23 received leronlimab after blinded, placebo-controlled trials of remdesivir, sarilumab, selinexor, or tocilizumab. Outcomes and results were extracted from medical records. RESULTS: Mean age was 69.5 ±â€…14.9 years; 20 had significant comorbidities. At baseline, 22 were receiving supplemental oxygen (3 high flow, 7 mechanical ventilation). Blood showed markedly elevated inflammatory markers (ferritin, D-dimer, C-reactive protein) and an elevated neutrophil-to-lymphocyte ratio. By day 30 after initial dosing, 17 were recovered, 2 were still hospitalized, and 4 had died. Of the 7 intubated at baseline, 4 were fully recovered off oxygen, 2 were still hospitalized, and 1 had died. CONCLUSIONS: Leronlimab appeared safe and well tolerated. The high recovery rate suggested benefit, and those with lower inflammatory markers had better outcomes. Some, but not all, patients appeared to have dramatic clinical responses, indicating that unknown factors may determine responsiveness to leronlimab. Routine inflammatory and cell prognostic markers did not markedly change immediately after treatment, although interleukin-6 tended to fall. In some persons, C-reactive protein clearly dropped only after the second leronlimab dose, suggesting that a higher loading dose might be more effective. Future controlled trials will be informative.


Subject(s)
COVID-19 , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized , COVID-19/therapy , HIV Antibodies , Humans , Immunization, Passive , Middle Aged , SARS-CoV-2 , Treatment Outcome
7.
mBio ; 12(6): e0265621, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1555537

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve in humans. Spike protein mutations increase transmission and potentially evade antibodies raised against the original sequence used in current vaccines. Our evaluation of serum neutralizing activity in both persons soon after SARS-CoV-2 infection (in April 2020 or earlier) or vaccination without prior infection confirmed that common spike mutations can reduce antibody antiviral activity. However, when the persons with prior infection were subsequently vaccinated, their antibodies attained an apparent biologic ceiling of neutralizing potency against all tested variants, equivalent to the original spike sequence. These findings indicate that additional antigenic exposure further improves antibody efficacy against variants. IMPORTANCE As SARS-CoV-2 evolves to become better suited for circulating in humans, mutations have occurred in the spike protein it uses for attaching to cells it infects. Protective antibodies from prior infection or vaccination target the spike protein to interfere with its function. These mutations can reduce the efficacy of antibodies generated against the original spike sequence, raising concerns for reinfections and vaccine failures, because current vaccines contain the original sequence. In this study, we tested antibodies from people infected early in the pandemic (before spike variants started circulating) or people who were vaccinated without prior infection. We confirmed that some mutations reduce the ability of antibodies to neutralize the spike protein, whether the antibodies were from past infection or vaccination. Upon retesting the previously infected persons after vaccination, their antibodies gained the same ability to neutralize mutated spike as the original spike, suggesting that the combination of infection and vaccination drove the production of enhanced antibodies to reach a maximal level of potency. Whether this can be accomplished by vaccination alone remains to be determined, but the results suggest that booster vaccinations may help improve efficacy against spike variants through improving not only antibody quantity, but also quality.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Vaccination/statistics & numerical data , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , Female , Humans , Male , Middle Aged , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Young Adult
8.
PLoS One ; 16(11): e0259703, 2021.
Article in English | MEDLINE | ID: covidwho-1506037

ABSTRACT

Two mRNA vaccines (BNT162b2 and mRNA-1273) against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) are globally authorized as a two-dose regimen. Understanding the magnitude and duration of protective immune responses is vital to curbing the pandemic. We enrolled 461 high-risk health services workers at the University of California, Los Angeles (UCLA) and first responders in the Los Angeles County Fire Department (LACoFD) to assess the humoral responses in previously infected (PI) and infection naïve (NPI) individuals to mRNA-based vaccines (BNT162b2/Pfizer- BioNTech or mRNA-1273/Moderna). A chemiluminescent microparticle immunoassay was used to detect antibodies against SARS-CoV-2 Spike in vaccinees prior to (n = 21) and following each vaccine dose (n = 246 following dose 1 and n = 315 following dose 2), and at days 31-60 (n = 110) and 61-90 (n = 190) following completion of the 2-dose series. Both vaccines induced robust antibody responses in all immunocompetent individuals. Previously infected individuals achieved higher median peak titers (p = 0.002) and had a slower rate of decay (p = 0.047) than infection-naïve individuals. mRNA-1273 vaccinated infection-naïve individuals demonstrated modestly higher titers following each dose (p = 0.005 and p = 0.029, respectively) and slower rates of antibody decay (p = 0.003) than those who received BNT162b2. A subset of previously infected individuals (25%) required both doses in order to reach peak antibody titers. The biologic significance of the differences between previously infected individuals and between the mRNA-1273 and BNT162b2 vaccines remains uncertain, but may have important implications for booster strategies.


Subject(s)
COVID-19 Vaccines , COVID-19/immunology , COVID-19/prevention & control , Immunity, Humoral , SARS-CoV-2 , Academic Medical Centers , Antibodies, Viral/immunology , Antibody Formation , California/epidemiology , Emergency Medical Services , Emergency Responders , Health Personnel , Humans , Immunoassay , RNA, Messenger/metabolism , Universities
9.
Clin Infect Dis ; 74(7): 1260-1264, 2022 04 09.
Article in English | MEDLINE | ID: covidwho-1352150

ABSTRACT

This post hoc analysis of the Adaptive Coronavirus Disease 2019 (COVID-19) Treatment Trial-1 (ACTT-1) shows a treatment effect of remdesivir (RDV) on progression to invasive mechanical ventilation (IMV) or death. Additionally, we create a risk profile that better predicts progression than baseline oxygen requirement alone. The highest risk group derives the greatest treatment effect from RDV.


Subject(s)
COVID-19 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Clinical Trials as Topic , Humans , Respiration, Artificial , SARS-CoV-2
10.
mSphere ; 6(4): e0054221, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1299220

ABSTRACT

Public health practices and high vaccination rates currently represent the primary interventions for managing the spread of coronavirus disease 2019 (COVID-19). We initiated a clinical study based on frequent, longitudinal workplace disease surveillance to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission among employees and their household members. We hypothesized that the study would reduce the economic burden and loss of productivity of both individuals and small businesses resulting from standard isolation methods, while providing new insights into virus-host dynamics. Study participants (27 employees and 27 household members) consented to provide frequent nasal or oral swab samples that were analyzed by reverse transcription-quantitative PCR (RT-qPCR) for SARS-CoV-2 RNA. Two study participants were found to be infected by SARS-CoV-2 during the study. One subject, a household member, was SARS-CoV-2 RNA positive for at least 71 days and had quantifiable serum virus-specific antibody concentrations for over 1 year. One unrelated employee became positive for SARS-CoV-2 RNA over the course of the study but remained asymptomatic, with low associated viral RNA copy numbers, no detectable serum IgM and IgG concentrations, and IgA concentrations that decayed rapidly (half-life: 1.3 days). A COVID-19 infection model was used to predict that without surveillance intervention, up to 7 employees (95% confidence interval [CI] = 3 to 10) would have become infected, with at most 1 of them requiring hospitalization. Our scalable and transferable surveillance plan met its primary objectives and represents a powerful example of an innovative public health initiative dovetailed with scientific discovery. IMPORTANCE The rapid spread of SARS-CoV-2 and the associated COVID-19 has precipitated a global pandemic heavily challenging our social behavior, economy, and health care infrastructure. In the absence of widespread, worldwide access to safe and effective vaccines and therapeutics, public health measures represent a key intervention for curbing the devastating impacts from the pandemic. We are conducting an ongoing clinical study based on frequent, longitudinal workplace disease surveillance to control SARS-CoV-2 transmission among employees and their household members. Our study was successful in surveying the viral and immune response dynamics in two participants with unusual infections: one remained positive for SARS-CoV-2 for 71 days, while the other was asymptomatic, with low associated viral RNA copy numbers. A COVID-19 infection model was used to predict that without surveillance intervention, up to 7 employees would have become infected, with at most 1 of them requiring hospitalization, underscoring the importance of our program.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Female , Humans , Longitudinal Studies , Male , Middle Aged , Pandemics/prevention & control , Public Health , RNA, Viral/immunology , Workplace , Young Adult
11.
ACS Nano ; 2021 Jun 23.
Article in English | MEDLINE | ID: covidwho-1279811

ABSTRACT

Studies of two SARS-CoV-2 mRNA vaccines suggested that they yield ∼95% protection from symptomatic infection at least short-term, but important clinical questions remain. It is unclear how vaccine-induced antibody levels quantitatively compare to the wide spectrum induced by natural SARS-CoV-2 infection. Vaccine response kinetics and magnitudes in persons with prior COVID-19 compared to virus-naïve persons are not well-defined. The relative stability of vaccine-induced versus infection-induced antibody levels is unclear. We addressed these issues with longitudinal assessments of vaccinees with and without prior SARS-CoV-2 infection using quantitative enzyme-linked immunosorbent assay (ELISA) of anti-RBD antibodies. SARS-CoV-2-naïve individuals achieved levels similar to mild natural infection after the first vaccination; a second dose generated levels approaching severe natural infection. In persons with prior COVID-19, one dose boosted levels to the high end of severe natural infection even in those who never had robust responses from infection, increasing no further after the second dose. Antiviral neutralizing assessments using a spike-pseudovirus assay revealed that virus-naïve vaccinees did not develop physiologic neutralizing potency until the second dose, while previously infected persons exhibited maximal neutralization after one dose. Finally, antibodies from vaccination waned similarly to natural infection, resulting in an average of ∼90% loss within 90 days. In summary, our findings suggest that two doses are important for quantity and quality of humoral immunity in SARS-CoV-2-naïve persons, while a single dose has maximal effects in those with past infection. Antibodies from vaccination wane with kinetics very similar to that seen after mild natural infection; booster vaccinations will likely be required.

SELECTION OF CITATIONS
SEARCH DETAIL