Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 13: 887125, 2022.
Article in English | MEDLINE | ID: covidwho-1903020

ABSTRACT

mRNA therapy is a novel anticancer strategy based on in vitro transcription (IVT), which has potential for the treatment of malignant tumors. The outbreak of the COVID-19 pandemic in the early 21st century has promoted the application of mRNA technologies in SARS-CoV-2 vaccines, and there has been a great deal of interest in the research and development of mRNA cancer vaccines. There has been progress in a number of key technologies, including mRNA production strategies, delivery systems, antitumor immune strategies, etc. These technologies have accelerated the progress and clinical applications of mRNA therapy, overcoming problems encountered in the past, such as instability, inefficient delivery, and weak immunogenicity of mRNA vaccines. This review provides a detailed overview of the production, delivery systems, immunological mechanisms, and antitumor immune response strategies for mRNA cancer vaccines. We list some mRNA cancer vaccines that are candidates for cancer treatment and discuss clinical trials in the field of tumor immunotherapy. In addition, we discuss the immunological mechanism of action by which mRNA vaccines destroy tumors as well as challenges and prospects for the future.


Subject(s)
COVID-19 , Cancer Vaccines , Neoplasms , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunotherapy , Neoplasms/drug therapy , Neoplasms/therapy , Pandemics , RNA, Messenger/genetics , RNA, Messenger/therapeutic use , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
3.
Infect Dis Poverty ; 9(1): 161, 2020 Nov 25.
Article in English | MEDLINE | ID: covidwho-949105

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is pandemic. It is critical to identify COVID-19 patients who are most likely to develop a severe disease. This study was designed to determine the clinical and epidemiological features of COVID-19 patients associated with the development of pneumonia and factors associated with disease progression. METHODS: Seventy consecutive patients with etiologically confirmed COVID-19 admitted to PLA General Hospital in Beijing, China from December 27, 2019 to March 12, 2020 were enrolled in this study and followed-up to March 16, 2020. Differences in clinical and laboratory findings between COVID-19 patients with pneumonia and those without were determined by the χ2 test or the Fisher exact test (categorical variables) and independent group t test or Mann-Whitney U test (continuous variables). The Cox proportional hazard model and Generalized Estimating Equations were applied to evaluate factors that predicted the progression of COVID-19. RESULTS: The mean incubation was 8.67 (95% confidence interval, 6.78-10.56) days. Mean duration from the first test severe acute respiratory syndrome coronavirus 2-positive to conversion was 11.38 (9.86-12.90) days. Compared to pneumonia-free patients, pneumonia patients were 16.5 years older and had higher frequencies of having hypertension, fever, and cough and higher circulating levels of neutrophil proportion, interleukin-6, low count (< 190/µl) of CD8+ T cells, and neutrophil/lymphocyte ratio. Thirteen patients deteriorated during hospitalization. Cox regression analysis indicated that older age and higher serum levels of interleukin-6, C-reactive protein, procalcitonin, and lactate at admission significantly predicted the progression of COVID-19. During hospitalization, circulating counts of T lymphocytes, CD4+ T cells, and CD8+ T cells were lower, whereas neutrophil proportion, neutrophil/lymphocyte ratio, and the circulating levels of interleukin-6, C-reactive protein, and procalcitonin were higher, in pneumonia patients than in pneumonia-free patients. CD8+ lymphocyte count in pneumonia patients did not recover when discharged. CONCLUSIONS: Older age and higher levels of C-reactive protein, procalcitionin, interleukin-6, and lactate might predict COVID-19 progression. T lymphocyte, especially CD8+ cell-mediated immunity is critical in recovery of COVID-19. This study may help in predicting disease progression and designing immunotherapy for COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Interleukin-6/blood , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Preschool , China/epidemiology , Disease Progression , Female , Hospitalization , Humans , Leukocyte Count , Male , Middle Aged , Neutrophils/pathology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/pathology , Risk Factors , SARS-CoV-2 , Young Adult
4.
Immunity ; 53(3): 685-696.e3, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-716745

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic poses a current world-wide public health threat. However, little is known about its hallmarks compared to other infectious diseases. Here, we report the single-cell transcriptional landscape of longitudinally collected peripheral blood mononuclear cells (PBMCs) in both COVID-19- and influenza A virus (IAV)-infected patients. We observed increase of plasma cells in both COVID-19 and IAV patients and XIAP associated factor 1 (XAF1)-, tumor necrosis factor (TNF)-, and FAS-induced T cell apoptosis in COVID-19 patients. Further analyses revealed distinct signaling pathways activated in COVID-19 (STAT1 and IRF3) versus IAV (STAT3 and NFκB) patients and substantial differences in the expression of key factors. These factors include relatively increase of interleukin (IL)6R and IL6ST expression in COVID-19 patients but similarly increased IL-6 concentrations compared to IAV patients, supporting the clinical observations of increased proinflammatory cytokines in COVID-19 patients. Thus, we provide the landscape of PBMCs and unveil distinct immune response pathways in COVID-19 and IAV patients.


Subject(s)
Coronavirus Infections/immunology , Cytokines/immunology , Influenza, Human/immunology , Leukocytes, Mononuclear/immunology , Pneumonia, Viral/immunology , Signal Transduction/immunology , Betacoronavirus/immunology , COVID-19 , Humans , Influenza A Virus, H1N1 Subtype/immunology , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL