ABSTRACT
In the context of the COVID-19 pandemic and the war between Russia and Ukraine, domestic oil prices have skyrocketed. Saving resources and develop lithium ion batteries with excellent performance are particularly important. In view of unreasonable utilization of non-target elements in laterite nickel ore and high energy consumption of traditional sulfate roasting laterite nickel ore, a pioneering idea was adopted to combine laterite nickel ore with LiFePO 4 , which not only meets the resource saving but also prepares lithium ion batteries with excellent performance, in this study. Using ammonium sulfate roasting laterite nickel ore-ammonium jarosite iron precipitation and hydrolysis preparation of Fe 2 O 3 -carbon thermal reduction preparation of LiFePO 4 /C process means, to achieve the ultimate goal of preparing LiFePO 4 from laterite nickel ore. Determining the optimum conditions of each part of experiment by single factor experiment and orthogonal experiment. It was concluded that under the optimal preparation conditions, the discharge specific capacity of lithium ion battery was 164.56 mAh/g at the rate of 0.5 C, and it was 94% of the theoretical capacity. After 100 cycles, we could find that the discharge specific capacity could be maintained at 162.78 mAh/g, and the capacity retention rate still reached 98%. • Preparation of LiFePO 4 /C cathode material from laterite nickel ore for rational utilization of resources. • Ammonium sulfate roasting laterite nickel ore can greatly improve the recovery rate of nickel and iron resources • The ammonium jarosite method has high iron precipitation rate, simple operation and less pollution. • The preparation of LiFePO 4 /C cathode material by carbothermal reduction method is conducive to practical applications. [ FROM AUTHOR]
ABSTRACT
Background: The Delta variant of concern (VOC) is rapidly becoming the dominant strain globally. We report the clinical characteristics and severity of hospitalized patients infected with Delta and Beta VOCs during the local outbreak in Harbin, Heilongjiang Province, China, and the effect of vaccines on the Delta variant. Methods: We collected a total of 735 COVID-19 patients from the First Affiliated Hospital of Harbin Medical University, including 96 cases infected with the Delta VOC and 639 cases infected with the Beta VOC. Demographic, clinical characteristic and laboratory findings were collected and compared. Results: Differences in viral shedding, IgG and IgM levels, and the neutrophil-to-lymphocyte ratio were noted between the Delta and Beta VOCs (p < 0.05). Survival analysis of the two groups revealed longer viral shedding of the Delta VOC (p < 0.05). For the Delta VOC, the longer the vaccination period, the lower the IgG and IgM levels. IgM levels were higher in the convalescent plasma group, whereas lymphocyte counts were lower. Conclusions: Delta VOC virus shedding was longer compared with Beta VOC shedding. Vaccination with inactivated vaccines can reduce the severe illness rate of the Delta VOC. IgG and IgM levels are reduced as the time period between the first and second vaccine doses increases.
ABSTRACT
Background: The relations between depression and intolerance of uncertainty (IU) have been extensively investigated during the COVID-19 pandemic. However, there is a lack of understanding on how each component of IU may differentially affect depression symptoms and vice versa. The current study used a network approach to reveal the component-to-symptom interplay between IU and depression and identify intervention targets for depression during the COVID-19 pandemic. Methods: A total of 624 college students participated in the current study. An IU-Depression network was estimated using items from the 12-item Intolerance of Uncertainty Scale and the Patient Health Questionnaire-9. We examined the network structure, node centrality, and node bridge centrality to identify component-to-symptom pathways, central nodes, and bridge nodes within the IU-Depression network. Results: Several distinct pathways (e.g., "Frustration when facing uncertainty" and "Feelings of worthlessness") emerged between IU and Depression. "Fatigue" and "Frustration when facing uncertainty" were identified as the central nodes in the estimated network. "Frustration when facing uncertainty," "Psychomotor agitation/retardation," and "Depressed or sad mood" were identified as bridging nodes between the IU and Depression communities. Conclusion: By delineating specific pathways between IU and depression and highlighting the influential role of "Frustration when facing uncertainty" in maintaining the IU-Depression co-occurrence, current findings may inform targeted prevention and interventions for depression during the COVID-19 pandemic.
ABSTRACT
The massive global consumption and discarded face masks drove by the ongoing spread of COVID-19. Meantime, incineration and landfill discarded face masks would result in severe environmental pollution and infectious hazards. Herein a suggestion to recycle polypropylene waste masks into CNTs by an environmentally friendly and high-added value disposal process was proposed, and which was prepared as supercapacitor electrode materials for energy storage attempting. The CNTs were prepared from waste masks by catalysis pyrolysis with Ni-Fe bimetallic catalysts. Especially, the bamboo-like structure CNT was obtained with Ni/Fe molar ratio is 3. This structure owned a high specific capacitance compared to other standard CNTs. Its specific capacitance could reach 56.04 F/g (1 A/g) and has excellent cycling stability with a capacitance retention rate of the material is 85.41% after 10,000 cycles. Besides, the assembled capacitor possesses a good energy density of 4.78 Wh/kg at a power density of 900 W/kg. Thus, this work provides a sustainable and cost-effective strategy for disposing waste masks into high-valuable CNT, and their potential application for supercapacitors was also studied and exploited. It would provide a new idea for recycling and utilizing other polypropylene wastes such as medical devices.
ABSTRACT
The adaptive immune receptor repertoire consists of the entire set of an individual's BCRs and TCRs and is believed to contain a record of prior immune responses and the potential for future immunity. Analyses of TCR repertoires via deep learning (DL) methods have successfully diagnosed cancers and infectious diseases, including coronavirus disease 2019. However, few studies have used DL to analyze BCR repertoires. In this study, we collected IgG H chain Ab repertoires from 276 healthy control subjects and 326 patients with various infections. We then extracted a comprehensive feature set consisting of 10 subsets of repertoire-level features and 160 sequence-level features and tested whether these features can distinguish between infected individuals and healthy control subjects. Finally, we developed an ensemble DL model, namely, DL method for infection diagnosis (https://github.com/chenyuan0510/DeepID), and used this model to differentiate between the infected and healthy individuals. Four subsets of repertoire-level features and four sequence-level features were selected because of their excellent predictive performance. The DL method for infection diagnosis outperformed traditional machine learning methods in distinguishing between healthy and infected samples (area under the curve = 0.9883) and achieved a multiclassification accuracy of 0.9104. We also observed differences between the healthy and infected groups in V genes usage, clonal expansion, the complexity of reads within clone, the physical properties in the α region, and the local flexibility of the CDR3 amino acid sequence. Our results suggest that the Ab repertoire is a promising biomarker for the diagnosis of various infections.
Subject(s)
COVID-19 , Deep Learning , Amino Acid Sequence , COVID-19/diagnosis , Humans , Receptors, Antigen, T-CellABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2-infected model cell lines and primary airway cells grown at an air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We found that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy despite notable accumulation of ribosomes within the slippery sequence on the frameshifting element. In a highly permissive cell line model, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokine, cytokine, and interferon-stimulated genes, many of these mRNAs were not translated efficiently. The impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development. IMPORTANCE SARS-CoV-2 utilizes a number of strategies to modulate host responses to ensure efficient propagation. Here, we used ribosome profiling in SARS-CoV-2-infected cells to gain a deeper understanding of the translationally regulated events in infected cells. We found that although viral mRNAs are abundantly expressed, they are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy and alternative translation initiation sites that help increase the coding potential of its RNAs. In permissive cells, SARS-CoV-2 infection induced the translational repression of numerous innate immune mediators. Though the impact of SARS-CoV-2 on host mRNA translation was more subtle in primary airway cell cultures, we noted marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data provide new insight into how SARS-CoV-2 modulates innate host responses and highlight unique mechanisms for therapeutic intervention.
Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Humans , Immunity, Innate , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , SARS-CoV-2/geneticsABSTRACT
The antiviral drug remdesivir has been used to treat the growing number of coronavirus disease 2019 (COVID-19) patients. However, the drug is mainly excreted through urine and feces and introduced into the environment to affect non-target organisms, including fish, which has raised concerns about potential ecotoxicological effects on aquatic organisms. Moreover, studies on the ecological impacts of remdesivir on aquatic environments have not been reported. Here, we aimed to explore the toxicological impacts of microinjection of remdesivir on zebrafish early embryonic development and larvae and the associated mechanism. We found that 100 µM remdesivir delayed epiboly and impaired convergent movement of embryos during gastrulation, and dose-dependent increases in mortality and malformation were observed in remdesivir-treated embryos. Moreover, 10-100 µM remdesivir decreased blood flow and swimming velocity and altered the behavior of larvae. In terms of molecular mechanisms, 80 differentially expressed genes (DEGs) were identified by transcriptome analysis in the remdesivir-treated group. Some of these DEGs, such as manf, kif3a, hnf1ba, rgn, prkcz, egr1, fosab, nr4a1, and ptgs2b, were mainly involved in early embryonic development, neuronal developmental disorders, vascular disease and the blood flow pathway. These data reveal that remdesivir can impair early embryonic development, blood flow and behavior of zebrafish embryos/larvae, probably due to alterations at the transcriptome level. This study suggests that it is important to avoid the discharge of remdesivir to aquatic ecosystems and provides a theoretical foundation to hinder remdesivir-induced ecotoxicity to aquatic environments.
Subject(s)
COVID-19 Drug Treatment , Water Pollutants, Chemical , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Ecosystem , Embryo, Nonmammalian , Hepatocyte Nuclear Factor 1-beta/metabolism , Hepatocyte Nuclear Factor 1-beta/pharmacology , Larva , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish , Zebrafish Proteins/metabolismABSTRACT
We designed a protein biosensor that uses thermodynamic coupling for sensitive and rapid detection of neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in serum. The biosensor is a switchable, caged luciferase-receptor-binding domain (RBD) construct that detects serum-antibody interference with the binding of virus RBD to angiotensin-converting enzyme 2 (ACE-2) as a proxy for neutralization. Our coupling approach does not require target modification and can better distinguish sample-to-sample differences in analyte binding affinity and abundance than traditional competition-based assays.
Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Neutralizing/chemistry , Antibodies, Viral/genetics , COVID-19/diagnosis , Humans , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistryABSTRACT
Emerging SARS-CoV-2 variants continue to cause waves of new infections globally. Developing effective antivirals against SARS-CoV-2 and its variants is an urgent task. The main protease (Mpro) of SARS-CoV-2 is an attractive drug target because of its central role in viral replication and its conservation among variants. We herein report a series of potent α-ketoamide-containing Mpro inhibitors obtained using the Ugi four-component reaction. The prioritized compound, Y180, showed an IC50 of 8.1 nM against SARS-CoV-2 Mpro and had oral bioavailability of 92.9%, 31.9% and 85.7% in mice, rats and dogs, respectively. Y180 protected against wild-type SARS-CoV-2, B.1.1.7 (Alpha), B.1.617.1 (Kappa) and P.3 (Theta), with EC50 of 11.4, 20.3, 34.4 and 23.7 nM, respectively. Oral treatment with Y180 displayed a remarkable antiviral potency and substantially ameliorated the virus-induced tissue damage in both nasal turbinate and lung of B.1.1.7-infected K18-human ACE2 (K18-hACE2) transgenic mice. Therapeutic treatment with Y180 improved the survival of mice from 0 to 44.4% (P = 0.0086) upon B.1.617.1 infection in the lethal infection model. Importantly, Y180 was also highly effective against the B.1.1.529 (Omicron) variant both in vitro and in vivo. Overall, our study provides a promising lead compound for oral drug development against SARS-CoV-2.
Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Disease Models, Animal , Dogs , Humans , Mice , RatsABSTRACT
BACKGROUND: Thrombosis and coagulopathy are pervasive pathological features of coronavirus disease 2019 (COVID-19), and thrombotic complications are a sign of severe COVID-19 disease and are associated with multiple organ failure and increased mortality. Platelets are essential cells that regulate hemostasis, thrombus formation and inflammation; however, the mechanism underlying the interaction between platelets and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains unclear. RESULTS: The present study performed RNA sequencing on the RNA isolated from platelets obtained from 10 COVID-19 patients and eight healthy donors, and discovered that SARS-CoV-2 not only significantly altered the coding and non-coding transcriptional landscape, but also altered the function of the platelets, promoted thrombus formation and affected energy metabolism of platelets. Integrative network biology analysis identified four key subnetworks and 16 risk regulators underlying SARS-CoV-2 infection, involved in coronavirus disease-COVID-19, platelet activation and immune response pathways. Furthermore, four risk genes (upstream binding transcription factor, RNA polymerase II, I and III subunit L, Y-box binding protein 1 and yippee like 2) were found to be associated with COVID-19 severity. Finally, a significant alteration in the von Willebrand factor/glycoprotein Ib-IX-V axis was revealed to be strongly associated with platelet aggregation and immunothrombosis. CONCLUSIONS: The transcriptional landscape and the identification of critical subnetworks and risk genes of platelets provided novel insights into the molecular mechanisms of immunothrombosis in COVID-19 progression, which may pave the way for the development of novel therapeutic strategies for preventing COVID-19-associated thrombosis and improving the clinical outcome of COVID-19 patients.
ABSTRACT
The wide transmission and host adaptation of SARS-CoV-2 have led to the rapid accumulation of mutations, posing significant challenges to the effectiveness of vaccines and therapeutic antibodies. Although several neutralizing antibodies were authorized for emergency clinical use, convalescent patients derived natural antibodies are vulnerable to SARS-CoV-2 Spike mutation. Here, we describe the screen of a panel of SARS-CoV-2 receptor-binding domain (RBD) targeted nanobodies (Nbs) from a synthetic library and the design of a biparatopic Nb, named Nb1-Nb2, with tight affinity and super-wide neutralization breadth against multiple SARS-CoV-2 variants of concern. Deep-mutational scanning experiments identify the potential binding epitopes of the Nbs on the RBD and demonstrate that biparatopic Nb1-Nb2 has a strong escape-resistant feature against more than 60 tested RBD amino acid substitutions. Using pseudovirion-based and trans-complementation SARS-CoV-2 tools, we determine that the Nb1-Nb2 broadly neutralizes multiple SARS-CoV-2 variants at sub-nanomolar levels, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Lambda (C.37), Kappa (B.1.617.1), and Mu (B.1.621). Furthermore, a heavy-chain antibody is constructed by fusing the human IgG1 Fc to Nb1-Nb2 (designated as Nb1-Nb2-Fc) to improve its neutralization potency, yield, stability, and potential half-life extension. For the new Omicron variant (B.1.1.529) that harbors unprecedented multiple RBD mutations, Nb1-Nb2-Fc keeps a firm affinity (KD < 1.0 × 10-12 M) and strong neutralizing activity (IC50 = 1.46 nM for authentic Omicron virus). Together, we developed a tetravalent biparatopic human heavy-chain antibody with ultrapotent and broad-spectrum SARS-CoV-2 neutralization activity which highlights the potential clinical applications.
Subject(s)
Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Recombinant Fusion Proteins/pharmacology , SARS-CoV-2/drug effects , Single-Domain Antibodies/pharmacology , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/genetics , Antibodies, Viral/biosynthesis , Antibodies, Viral/genetics , Antibody Affinity , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Epitopes/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Immunoglobulin Fc Fragments/biosynthesis , Immunoglobulin Fc Fragments/genetics , Models, Molecular , Neutralization Tests , Protein Binding/drug effects , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunologyABSTRACT
OBJECTIVES: This study retrospectively compares the effectiveness of methylprednisolone to dexamethasone in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19) requiring intensive care. DESIGN: This is an institutional review board approved cohort study in patients with COVID-19 requiring intensive care unit (ICU) admission. Patients admitted and requiring oxygen supplementation were treated with no steroids, methylprednisolone, or dexamethasone. SETTING: This study takes place in the ICU's at a large, tertiary, public teaching hospital serving a primarily low-income community in urban Los Angeles. PATIENTS: All eligible patients admitted to the ICU for COVID-19 respiratory failure from March 1 to July 31, 2020 were included in this study. INTERVENTIONS: A total of 262 patients were grouped as receiving usual care (n = 75), methylprednisolone dosed at least at 1mg/kg/day for ≥ 3 days (n = 104), or dexamethasone dosed at least at 6 mg for ≥7 days (n = 83). MEASUREMENTS AND MAIN RESULTS: All-cause mortality within 50 days of initial corticosteroid treatment as compared to usual care was calculated. The mortality effect was then stratified based on levels of respiratory support received by the patient. In this cohort of 262 patients with severe COVID-19, all-cause mortalities in the usual care, methylprednisolone, and dexamethasone groups were 41.3%, 16.4% and 26.5% at 50 days (P < 0.01) respectively. In patients requiring mechanical ventilation, mortality was 42% lower in the methylprednisolone group than in the dexamethasone group (hazard ratio 0.48, 95% CI: 0.235-0.956, P = 0.0385). CONCLUSIONS: In COVID-19 patients requiring mechanical ventilation, sufficiently dosed methylprednisolone can lead to a further decreased mortality as compared to dexamethasone.
Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Critical Care , Dexamethasone/therapeutic use , Methylprednisolone/therapeutic use , Adult , Aged , COVID-19/complications , COVID-19/mortality , Cohort Studies , Female , Hospitalization , Humans , Male , Middle Aged , Survival Rate , Treatment OutcomeABSTRACT
Mortality rate is high with COVID-19. Multiple organ damage is a common and lethal complication of the severe COVID-19 patients. Of 198 recruited participants, 65 patients (32.8 %) had coagulopathy. In this retrospective study, we analyzed the association of coagulopathy with organ dysfunction in hospitalized COVID-19 patients. The incidence of coagulopathy was associated with increased odds of acute liver injury, renal dysfunction and acute respiratory distress syndrome (ARDS) by multivariable regression. Overall mortality was 65 % for the patients with coagulopathy and 3.76 % for the patients without coagulopathy. History of hypertension, leukocytosis and elevated CRP concentrations were associated with higher odds of coagulopathy. Patients with coagulopathy had similar levels of hepatic and renal functional enzymes prior to the onset of coagulopathy as the patients without coagulopathy, suggesting that coagulopathy is an association of the progression of multi-organ dysfunction in COVID-19. Plasma IL-6 was higher in patients with coagulopathy than controls, but it's not a risk factor for organ dysfunction by logistic regression. The present study shows that coagulopathy, overt DIC and non-overt DIC, associates with organ dysfunction and higher mortality rate in COVID-19. Thus, anticoagulant therapy may prevent organ dysfunction and increase survival rate in COVID-19.
ABSTRACT
Background: Myocardial injury is a life-threatening complication of coronavirus disease 2019 (COVID-19). Pre-existing health conditions and early morphological alterations may precipitate cardiac injury and dysfunction after contracting the virus. The current study aimed at assessing potential risk factors for COVID-19 cardiac complications in patients with pre-existing conditions and imaging predictors. Methods and Results: The multi-center, retrospective cohort study consecutively enrolled 400 patients with lab-confirmed COVID-19 in six Chinese hospitals remote to the Wuhan epicenter. Patients were diagnosed with or without the complication of myocardial injury by history and cardiac biomarker Troponin I/T (TnI/T) elevation above the 99th percentile upper reference limit. The majority of COVID-19 patients with myocardial injury exhibited pre-existing health conditions, such as hypertension, diabetes, hypercholesterolemia, and coronary disease. They had increased levels of the inflammatory cytokine interleukin-6 and more in-hospital adverse events (admission to an intensive care unit, invasive mechanical ventilation, or death). Chest CT scan on admission demonstrated that COVID-19 patients with myocardial injury had higher epicardial adipose tissue volume ([EATV] 139.1 (83.8-195.9) vs. 92.6 (76.2-134.4) cm2; P = 0.036). The optimal EATV cut-off value (137.1 cm2) served as a useful factor for assessing myocardial injury, which yielded sensitivity and specificity of 55.0% (95%CI, 32.0-76.2%) and 77.4% (95%CI, 71.6-82.3%) in adverse cardiac events, respectively. Multivariate logistic regression analysis showed that EATV over 137.1 cm2 was a strong independent predictor for myocardial injury in patients with COVID-19 [OR 3.058, (95%CI, 1.032-9.063); P = 0.044]. Conclusions: Augmented EATV on admission chest CT scan, together with the pre-existing health conditions (hypertension, diabetes, and hyperlipidemia) and inflammatory cytokine production, is associated with increased myocardial injury and mortality in COVID-19 patients. Assessment of pre-existing conditions and chest CT scan EATV on admission may provide a threshold point potentially useful for predicting cardiovascular complications of COVID-19.
ABSTRACT
INTRODUCTION: Patients with diabetes mellitus admitted to hospital with COVID-19 have poorer outcomes. However, the drivers of poorer outcomes are not fully elucidated. We performed detailed characterization of patients with COVID-19 to determine the clinical and biochemical factors that may be drivers of poorer outcomes. RESEARCH DESIGN AND METHODS: This is a retrospective cohort study of 889 consecutive inpatients diagnosed with COVID-19 between March 9 and April 22, 2020 in a large London National Health Service Trust. Unbiased multivariate logistic regression analysis was performed to determine variables that were independently and significantly associated with increased risk of death and/or intensive care unit (ICU) admission within 30 days of COVID-19 diagnosis. RESULTS: 62% of patients in our cohort were of non-white ethnic background and the prevalence of diabetes was 38%. 323 (36%) patients met the primary outcome of death/admission to the ICU within 30 days of COVID-19 diagnosis. Male gender, lower platelet count, advancing age and higher Clinical Frailty Scale (CFS) score (but not diabetes) independently predicted poor outcomes on multivariate analysis. Antiplatelet medication was associated with a lower risk of death/ICU admission. Factors that were significantly and independently associated with poorer outcomes in patients with diabetes were coexisting ischemic heart disease, increasing age and lower platelet count. CONCLUSIONS: In this large study of a diverse patient population, comorbidity (ie, diabetes with ischemic heart disease; increasing CFS score in older patients) was a major determinant of poor outcomes with COVID-19. Antiplatelet medication should be evaluated in randomized clinical trials among high-risk patient groups.
Subject(s)
COVID-19/epidemiology , Diabetes Mellitus/epidemiology , Frailty/diagnosis , Intensive Care Units/statistics & numerical data , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/therapy , Comorbidity , Diabetes Mellitus/therapy , Female , Frailty/epidemiology , Hospitals, Teaching , Humans , Logistic Models , London/epidemiology , Male , Middle Aged , Multivariate Analysis , Retrospective Studies , Risk Factors , Sex Factors , Survival Rate , Young AdultABSTRACT
Covid-19 has significantly affected people's food purchasing and consumption habits. Fears of disruptions in the food supply chain have caused an increase in the quantity and type of food bought by households. However, increases in food purchases could give rise to food waste with negative ramifications for the environment in terms of greenhouse emissions and groundwater pollution. To assess whether household food waste has changed during Covid-19 lockdown, we conducted a nationwide survey of household food purchasers in Italy. Although the amount of food purchases increased during the lockdown, our results show that food waste actually decreased as people mainly bought more non-perishable food. Interestingly, concerns about the impact that the pandemic could have on the waste management system and the desire not to add pressure to the waste management system are key drivers of decreased food waste in Italy during the pandemic. Our findings seem to suggest that Italian consumers are developing a new level of awareness about food waste with potential positive impacts on the environment in terms of reducing greenhouse gas emissions and groundwater pollution.
ABSTRACT
Many studies have investigated causes of COVID-19 and explored safety measures for preventing COVID-19 infections. Unfortunately, these studies fell short to address disparities in health status and resources among decentralized communities in the United States. In this study, we utilized an advanced modeling technique to examine complex associations of county-level health factors with COVID-19 mortality for all 3141 counties in the United States. Our results indicated that counties with more uninsured people, more housing problems, more urbanized areas, and longer commute are more likely to have higher COVID-19 mortality. Based on the nationwide population-based data, this study also echoed prior research that used local data, and confirmed that county-level sociodemographic factors, such as more Black, Hispanic, and older subpopulations, are attributed to high risk of COVID-19 mortality. We hope that these findings will help set up priorities on high risk communities and subpopulations in future for fighting the novel virus.
ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads worldwide and leads to an unprecedented medical burden and lives lost. Neutralizing antibodies provide efficient blockade for viral infection and are a promising category of biological therapies. Here, using SARS-CoV-2 spike receptor-binding domain (RBD) as a bait, we generate a panel of humanized single domain antibodies (sdAbs) from a synthetic library. These sdAbs reveal binding kinetics with the equilibrium dissociation constant (KD) of 0.99-35.5 nM. The monomeric sdAbs show half maximal neutralization concentration (EC50) of 0.0009-0.07 µg/mL and 0.13-0.51 µg/mL against SARS-CoV-2 pseudotypes, and authentic SARS-CoV-2, respectively. Competitive ligand-binding experiments suggest that the sdAbs either completely block or significantly inhibit the association between SARS-CoV-2 RBD and viral entry receptor ACE2. Fusion of the human IgG1 Fc to sdAbs improve their neutralization activity by up to ten times. These results support neutralizing sdAbs as a potential alternative for antiviral therapies.
Subject(s)
Antibodies, Neutralizing/immunology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/pharmacology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/drug therapy , HEK293 Cells , Humans , Immunoglobulin G , Models, Molecular , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Protein Binding , Receptors, Virus/immunology , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Vero CellsABSTRACT
The induction therapy containing ixazomib, an oral proteasome inhibitor, has shown favorable efficacy and safety in clinical trials, but its experience in real-life remains limited. In routine practice, few patients received ixazomib-based induction therapy due to reasons including (1) patients' preference on oral regimens, (2) concerns on adverse events (AEs) of other intravenous/subcutaneous regimens, (3) requirements for less center visits, and (4) fears of COVID-19 and other infectious disease exposures. With the aim of assessing the real-life effectiveness and safety of ixazomib-based induction therapy, we performed this multi-center, observational study on 85 newly diagnosed multiple myeloma (NDMM) patients from 14 medical centers. Ixazomib-based regimens included ixazomib-lenalidomide-dexamethasone (IRd) in 44.7% of patients, ixazomib-dexamethasone (Id) in 29.4%, and Id plus another agent (doxorubicin, cyclophosphamide, thalidomide, or daratumumab) in 25.9%. Different ixazomib-based therapies were applied due to (1) financial burdens or limitations on local health insurance coverage, (2) concerns on treatment tolerance, and (3) drug accessibility issue. Ten patients received ixazomib maintenance. The median age was 67 years; 43.5% had ISS stage III disease; 48.2% had an Eastern Cooperative Oncology Group performance score ≥ 2; and 17.6% with high-risk cytogenetic abnormalities. Overall response rate for all 85 patients was 95.3%, including 65.9% very good partial response or better and 29.5% complete responses. The median time to response was 30 days. The response rate was similar across different ixazomib-based regimens. Median progression-free survival was not reached. Severe AEs (≥ grade 3) were reported in 29.4% of patients. No grade 3/4 peripheral neuropathy (PN) occurred. Patients received a median of 6 (range 1-20) cycles of ixazomib treatment; 56.6% remained on treatment at data cutoff; 15.3% discontinued treatment due to intolerable AEs. These results support that the ixazomib-based frontline therapy was highly effective with acceptable toxicity in routine practice and the ixazomib oral regimens could be good alternative options for NDMM patients.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Boron Compounds/administration & dosage , Glycine/analogs & derivatives , Multiple Myeloma/drug therapy , Peripheral Nervous System Diseases/chemically induced , Adolescent , Adult , Aged , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Boron Compounds/adverse effects , Cyclophosphamide/administration & dosage , Cyclophosphamide/adverse effects , Dexamethasone/administration & dosage , Dexamethasone/adverse effects , Doxorubicin/administration & dosage , Doxorubicin/adverse effects , Drug Administration Schedule , Female , Glycine/administration & dosage , Glycine/adverse effects , Humans , Lenalidomide/administration & dosage , Lenalidomide/adverse effects , Male , Middle Aged , Multiple Myeloma/mortality , Multiple Myeloma/pathology , Neoplasm Staging , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/physiopathology , Remission Induction , Survival Analysis , Thalidomide/administration & dosage , Thalidomide/adverse effects , Treatment OutcomeABSTRACT
OBJECTIVES: To explore and analyze the epidemic features of coronavirus disease 2019 (COVID-19) in Hunan Province from January 21, 2020 to March 14, 2020, as well as to investigate the COVID-19 epidemics in each city of Hunan Province. METHODS: The epidemic data was obtained from the official website of Hunan Province's Health Commission. The data of each city of Hunan Province was analyzed separately. Spatial distribution of cumulative confirmed COVID-19 patients and the cumulative occurrence rate was drawn by ArcGIS software for each city in Hunan Province. Some regional indexes were also compared with that in the whole country. RESULTS: The first patient was diagnosed in January 21, sustained patient growth reached its plateau in around February 17. Up to March 14, the cumulative confirmed COVID-19 patients stopped at 1 018. The cumulative occurrence rate of COVID-19 patients was 0.48 per 0.1 million person. The number of cumulative severe patients was 150 and the number of cumulative dead patients was 4. The mortality rate (0.39%) and the cure rate (99.6%) in Hunan Province was significantly lower and higher respectively than the corresponding average rate in the whole country (0.90% and 96.2%, Hubei excluded). The first 3 cities in numbers of the confirmed patients were Changsha, Yueyang, and Shaoyang. While sorted by the cumulative occurrence rate, the first 3 cities in incidence were Changsha, Yueyang, and Zhuzhou. CONCLUSIONS: The epidemic of COVID-19 spread out smoothly in Hunan Province. The cities in Hunan Province implement anti-disease strategies based on specific situations on their own and keep the epidemic in the range of controllable.