ABSTRACT
BACKGROUND: The objective of this study was to examine the relationship of mental health status between self-poisoning suicide patients and their family members, and it also sought to identify potential patient's risk and parental factors for the prediction of suicide attempt, anxiety, and depression. METHODS: In this study, 151 poisoned patients were prospectively included, and they were matched 1:1 with 151 family members. We gathered information on patient's and their matched family member's demographics, lifestyle choices, mental health status, level of intimacy, and history of psychiatry disease. The relationship of patient's and their family member's mental health state was investigated using a correlation matrix. Multivariable analyses (multiple logistic regression) were conducted among patients and their matched family members, to identify potential risk factors for self-poisoning suicide, anxiety, and depression. RESULTS: Of the total patients, 67.55% (102/151) attempted self-poisoning suicide. Poisoned patients had more severe anxiety and depression symptoms than their matched family members, and this difference was even more pronounced among patients with self-poisoning suicide. Generalized anxiety disorder-7 (GAD-7) score for family members was significantly and favorably correlated with patient's GAD-7 score after eliminating non-suicide patients and their matched family members. The patient health questionnaire-9 (PHQ-9) score showed a similar pattern, and the family member's PHQ-9 score was strongly and favorably associated with patient's PHQ-9 and Beck hopelessness scale-20 (BHS-20) score. Multivariable analysis showed that married marital status (P = 0.038), quitting smoking (P = 0.003), sedentary time of 1 to 6 h (P = 0.013), and participation in a sports more than five times per week (P = 0.046) were all significantly associated with a lower risk of suicide by self-poisoning, while a more serious anxiety state (P = 0.001) was significantly associated with a higher risk of self-poisoning suicide. Multivariable analysis demonstrated that, specifically among self-poisoning suicide patients, married marital status (P = 0.011) and no history of psychiatry disease (P < 0.001) were protective factors for anxiety, while divorced or widowed marital status (P = 0.004), a sedentary time of 1 to 3 h (P = 0.022), and a higher monthly income (P = 0.027) were significant contributors to anxiety. The propensity of additional family-matched characteristics to predict patient's suicidality, anxiety, and depression was also examined. CONCLUSIONS: Self-poisoning suicide patients have severe mental health issues. Patients who self-poison have a close connection to their family member's mental health, particularly their levels of anxiety and depression. According to the findings, being married and adopting healthy lifestyle habits, such as quitting smoking and drinking, increasing their physical activity levels, and managing their idle time, are able to help patients with mental health concerns and even suicidal thoughts.
Subject(s)
Family , Suicide, Attempted , Humans , Matched-Pair Analysis , Family/psychology , Suicide, Attempted/psychology , Anxiety Disorders/psychology , Health StatusABSTRACT
Coronaviruses that can infect humans can cause either common colds (HCoV-NL63, HCoV-229E, HCoV-HKU1, and HCoV-OC43) or severe respiratory symptoms (SARS-CoV-2, SARS-CoV, and MERS-CoV). The papain-like proteases (PLPs) of SARS-CoV, SARS-CoV-2, MERS-CoV, and HCoV-NL63 function in viral innate immune evasion and have deubiquitinating (DUB) and deISGylating activities. We identified the PLPs of HCoV-229E, HCoV-HKU1, and HCoV-OC43 and found that their enzymatic properties correlated with their ability to suppress innate immune responses. A conserved noncatalytic aspartic acid residue was critical for both DUB and deISGylating activities, but the PLPs had differing ubiquitin (Ub) chain cleavage selectivities and binding affinities for Ub, K48-linked diUb, and interferon-stimulated gene 15 (ISG15) substrates. The crystal structure of HKU1-PLP2 in complex with Ub revealed binding interfaces that accounted for the unusually high binding affinity between this PLP and Ub. In cellular assays, the PLPs from the severe disease-causing coronaviruses strongly suppressed innate immune IFN-I and NF-κB signaling and stimulated autophagy, whereas the PLPs from the mild disease-causing coronaviruses generally showed weaker effects on immune suppression and autophagy induction. In addition, a PLP from a SARS-CoV-2 variant of concern showed increased suppression of innate immune signaling pathways. Overall, these results demonstrated that the DUB and deISGylating activities and substrate selectivities of these PLPs differentially contribute to viral innate immune evasion and may affect viral pathogenicity.
Subject(s)
COVID-19 , Papain , Humans , Papain/chemistry , Papain/genetics , Papain/metabolism , SARS-CoV-2/metabolism , Peptide Hydrolases/metabolism , Ubiquitin/metabolism , Immunity, InnateABSTRACT
BACKGROUND: The novel coronavirus disease 2019 (COVID-19) has affected a large number of countries. Informing the public and decision makers of the COVID-19's economic burdens is essential for understanding the real pandemic impact. METHODS: COVID-19 premature mortality and disability impact in Taiwan was analyzed using the Taiwan National Infectious Disease Statistics System (TNIDSS) by estimating the sex/age-specific years of life lost through death (YLLs), the number of years lived with disability (YLDs), and the disability-adjusted life years (DALYs) from January 2020 to November 2021. RESULTS: Taiwan recorded 1004.13 DALYs (95% CI: 1002.75-1005.61) per 100,000 population for COVID-19, with YLLs accounting for 99.5% (95% CI: 99.3%99.6%) of all DALYs, with males suffering more from the disease than females. For population aged ≥ 70 years, the disease burdens of YLDs and YLLs were 0.1% and 99.9%, respectively. Furthermore, we found that duration of disease in critical state contributed 63.9% of the variance in DALY estimations. CONCLUSIONS: The nationwide estimation of DALYs in Taiwan provides insights into the demographic distributions and key epidemiological parameter for DALYs. The essentiality of enforcing protective precautions when needed is also implicated. The higher YLLs percentage in DALYs also revealed the fact of high confirmed death rates in Taiwan. To reduce infection risks and disease, it is crucial to maintain moderate social distancing, border control, hygiene measures, and increase vaccine coverage levels.
Subject(s)
COVID-19 , Disability-Adjusted Life Years , Male , Female , Humans , Life Expectancy , Quality-Adjusted Life Years , Monte Carlo Method , Taiwan/epidemiology , COVID-19/epidemiology , Global Health , Cost of IllnessABSTRACT
Isolated reports of new-onset diabetes in patients with coronavirus disease 2019 (COVID-19) have led researchers to hypothesize that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects human exocrine and endocrine pancreatic cells ex vivo and in vivo. However, existing research lacks experimental evidence indicating that SARS-CoV-2 can infect pancreatic tissue. Here, we found that cats infected with a high dose of SARS-CoV-2 exhibited hyperglycemia. We also detected SARS-CoV-2 RNA in pancreatic tissues of these cats, and immunohistochemical staining revealed the presence of SARS-CoV-2 nucleocapsid protein (NP) in islet cells. SARS-CoV-2 NP and spike proteins were primarily detected in glucagon-positive cells, and most glucagon-positive cells expressed ACE2. Additionally, immune protection experiments conducted on cats showed that blood glucose levels of immunized cats did not increase postchallenge. Our data indicate cat pancreas as a SARS-CoV-2 target and suggest that the infection of glucagon-positive cells could contribute to the metabolic dysregulation observed in SARS-CoV-2-infected cats.
Subject(s)
COVID-19 , Hyperglycemia , Animals , Cats , Humans , COVID-19/complications , COVID-19/veterinary , Glucagon , Hyperglycemia/veterinary , Hyperglycemia/virology , RNA, Viral , SARS-CoV-2ABSTRACT
BACKGROUND: Millions of COVID-19 pediatric survivors are facing the risk of long COVID after recovery from acute COVID-19. The primary objective of this study was to systematically review the available literature and determine the pooled prevalence of, and risk factors for long COVID among the pediatric survivors. METHODS: Studies that assessed the prevalence of, or risk factors associated with long COVID among pediatric COVID-19 survivors were systematically searched in PubMed, Embase, and Cochrane Library up to December 11th, 2022. Random effects model was performed to estimate the pooled prevalence of long COVID among pediatric COVID-19 patients. Subgroup analyses and meta-regression on the estimated prevalence of long COVID were performed by stratification with follow-up duration, mean age, sex ratio, percentage of multisystem inflammatory syndrome, hospitalization rate at baseline, and percentage of severe illness. RESULTS: Based on 40 studies with 12,424 individuals, the pooled prevalence of any long COVID was 23.36 % ([95 % CI 15.27-32.53]). The generalized symptom (19.57 %, [95 % CI 9.85-31.52]) was reported most commonly, followed by respiratory (14.76 %, [95 % CI 7.22-24.27]), neurologic (13.51 %, [95 % CI 6.52-22.40]), and psychiatric (12.30 %, [95% CI 5.38-21.37]). Dyspnea (22.75 %, [95% CI 9.38-39.54]), fatigue (20.22 %, [95% CI 9.19-34.09]), and headache (15.88 %, [95 % CI 6.85-27.57]) were most widely reported specific symptoms. The prevalence of any symptom during 3-6, 6-12, and> 12 months were 26.41 % ([95 % CI 14.33-40.59]), 20.64 % ([95 % CI 17.06-24.46]), and 14.89 % ([95 % CI 6.09-26.51]), respectively. Individuals with aged over ten years, multisystem inflammatory syndrome, or had severe clinical symptoms exhibited higher prevalence of long COVID in multi-systems. Factors such as older age, female, poor physical or mental health, or had severe infection or more symptoms were more likely to have long COVID in pediatric survivors. CONCLUSIONS: Nearly one quarter of pediatric survivors suffered multisystem long COVID, even at 1 year after infection. Ongoing monitoring, comprehensive prevention and intervention is warranted for pediatric survivors, especially for individuals with high risk factors.
Subject(s)
COVID-19 , Adolescent , Aged , Child , Female , Humans , COVID-19/epidemiology , Post-Acute COVID-19 Syndrome , Prevalence , Risk FactorsABSTRACT
The Wells-Riley model invokes human physiological and engineering parameters to successfully treat airborne transmission of infectious diseases. Applications of this model would have high potentiality on evaluating policy actions and interventions intended to improve public safety efforts on preventing the spread of COVID-19 in an enclosed space. Here, we constructed the interaction relationships among basic reproduction number (R0) - exposure time - indoor population number by using the Wells-Riley model to provide a robust means to assist in planning containment efforts. We quantified SARS-CoV-2 changes in a case study of two Wuhan (Fangcang and Renmin) hospitals. We conducted similar approach to develop control measures in various hospital functional units by taking all accountable factors. We showed that inhalation rates of individuals proved crucial for influencing the transmissibility of SARS-CoV-2, followed by air supply rate and exposure time. We suggest a minimum air change per hour (ACH) of 7 h-1 would be at least appropriate with current room volume requirements in healthcare buildings when indoor population number is < 10 and exposure time is < 1 h with one infector and low activity levels being considered. However, higher ACH (> 16 h-1) with optimal arranged-exposure time/people and high-efficiency air filters would be suggested if more infectors or higher activity levels are presented. Our models lay out a practical metric for evaluating the efficacy of control measures on COVID-19 infection in built environments. Our case studies further indicate that the Wells-Riley model provides a predictive and mechanistic basis for empirical COVID-19 impact reduction planning and gives a framework to treat highly transmissible but mechanically heterogeneous airborne SARS-CoV-2.
Subject(s)
COVID-19 , Humans , SARS-CoV-2 , HospitalsABSTRACT
Objective: Late 2019 witnessed the outbreak and widespread transmission of coronavirus disease 2019 (COVID-19), a new, highly contagious disease caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Consequently, considerable attention has been paid to the development of new diagnostic tools for the early detection of SARS-CoV-2. Methods: In this study, a new poly-N-isopropylacrylamide microgel-based electrochemical sensor was explored to detect the SARS-CoV-2 spike protein (S protein) in human saliva. The microgel was composed of a copolymer of N-isopropylacrylamide and acrylic acid, and gold nanoparticles were encapsulated within the microgel through facile and economical fabrication. The electrochemical performance of the sensor was evaluated through differential pulse voltammetry. Results: Under optimal experimental conditions, the linear range of the sensor was 10 -13-10 -9 mg/mL, whereas the detection limit was 9.55 fg/mL. Furthermore, the S protein was instilled in artificial saliva as the infected human saliva model, and the sensing platform showed satisfactory detection capability. Conclusion: The sensing platform exhibited excellent specificity and sensitivity in detecting spike protein, indicating its potential application for the time-saving and inexpensive detection of SARS-CoV-2.
Subject(s)
COVID-19 , Metal Nanoparticles , Microgels , Humans , Spike Glycoprotein, Coronavirus , COVID-19/diagnosis , Gold , SARS-CoV-2ABSTRACT
Innate immune cells are critical in antitumor immune surveillance and the development of antitumor adaptive cellular immunity. Trained innate immune cells demonstrate immune memory-like characteristics, producing more vigorous immune responses to secondary homologous or heterologous stimuli. This study aimed to investigate whether inducing trained immunity is beneficial when using a tumor vaccine to promote antitumor adaptive immune responses. A biphasic delivery system was developed with the trained immunity inducer Muramyl Dipeptide (MDP) and specific tumor antigen human papillomavirus (HPV) E7 peptide encapsulated by poly(lactide-co-glycolide)-acid(PLGA) nanoparticles (NPs), and the NPs along with another trained immunity agonist, ß-glucan, were further embedded in a sodium alginate hydrogel. The nanovaccine formulation demonstrated a depot effect for E7 at the injection site and targeted delivery to the lymph nodes and dendritic cells (DCs). The antigen uptake and maturation of DCs were significantly promoted. A trained immunity phenotype, characterized by increased production of IL-1ß, IL-6, and TNF-α, was induced in vitro and in vivo in response to secondary homologous or heterologous stimulation. Furthermore, prior innate immune training enhanced the antigen-specific INF-γ-expressing immune cell response elicited by subsequent stimulation with the nanovaccine. Immunization with the nanovaccine completely inhibited the growth of TC-1 tumors and even abolished established tumors in mice. Mechanistically, the inclusion of ß-glucan and MDP significantly enhanced the responses of tumor-specific effector adaptive immune cells. The results strongly suggest that the controlled release and targeted delivery of an antigen and trained immunity inducers with an NP/hydrogel biphasic system can elicit robust adaptive immunity, which provides a promising tumor vaccination strategy.
Subject(s)
Cancer Vaccines , Neoplasms , beta-Glucans , Humans , Animals , Mice , Adjuvants, Immunologic/pharmacology , Neoplasms/drug therapy , beta-Glucans/pharmacology , Immunization , HydrogelsSubject(s)
COVID-19 , Humans , SARS-CoV-2 , Hospitalization , Outcome Assessment, Health Care , Survivors , China , Retrospective StudiesABSTRACT
Symptom treatments for Coronavirus disease 2019 (COVID-19) infection and Long COVID are one of the most critical issues of the pandemic era. In light of the lack of standardized medications for treating COVID-19 symptoms, traditional Chinese medicine (TCM) has emerged as a potentially viable strategy based on numerous studies and clinical manifestations. Taiwan Chingguan Yihau (NRICM101), a TCM designed based on a medicinal formula with a long history of almost 500 years, has demonstrated its antiviral properties through clinical studies, yet the pharmacogenomic knowledge for this formula remains unclear. The molecular mechanism of NRICM101 was systematically analyzed by using exploratory bioinformatics and pharmacodynamics (PD) approaches. Results showed that there were 434 common interactions found between NRICM101 and COVID-19 related genes/proteins. For the network pharmacology of the NRICM101, the 434 common interacting genes/proteins had the highest associations with the interleukin (IL)-17 signaling pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Moreover, the tumor necrosis factor (TNF) was found to have the highest association with the 30 most frequently curated NRICM101 chemicals. Disease analyses also revealed that the most relevant diseases with COVID-19 infections were pathology, followed by cancer, digestive system disease, and cardiovascular disease. The 30 most frequently curated human genes and 2 microRNAs identified in this study could also be used as molecular biomarkers or therapeutic options for COVID-19 treatments. In addition, dose-response profiles of NRICM101 doses and IL-6 or TNF-α expressions in cell cultures of murine alveolar macrophages were constructed to provide pharmacodynamic (PD) information of NRICM101. The prevalent use of NRICM101 for standardized treatments to attenuate common residual syndromes or chronic sequelae of COVID-19 were also revealed for post-pandemic future.
Subject(s)
COVID-19 , Drugs, Chinese Herbal , Humans , Animals , Mice , Post-Acute COVID-19 Syndrome , COVID-19 Drug Treatment , Network Pharmacology , Medicine, Chinese Traditional , Tumor Necrosis Factor-alpha , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Molecular Docking SimulationABSTRACT
High traffic touch surfaces such as doorknobs, countertops, and handrails can be transmission points for the spread of pathogens, emphasizing the need to develop materials that actively self-sanitize. Metals are frequently used for these surfaces due to their durability, but many metals also possess antimicrobial properties which function through a variety of mechanisms. This work investigates metallic alloys comprised of several metals which individually possess antimicrobial properties, with the target of achieving broad-spectrum, rapid sanitation through synergistic activity. An entropy-motivated stabilization paradigm is proposed to prepare scalable alloys of copper, silver, nickel and cobalt. Using combinatorial sputtering, thin-film alloys were prepared on 100 mm wafers with ≈50% compositional grading of each element across the wafer. The films were then annealed and investigated for alloy stability. Antimicrobial activity testing was performed on both the as-grown alloys and the annealed films using four microorganisms-Phi6, MS2, Bacillus subtilis and Escherichia coli-as surrogates for human viral and bacterial pathogens. Testing showed that after 30 s of contact with some of the test alloys, Phi6, an enveloped, single-stranded RNA bacteriophage that serves as a SARS-CoV-2 surrogate, was reduced up to 6.9 orders of magnitude (> 99.9999%). Additionally, the non-enveloped, double-stranded DNA bacteriophage MS2, and the Gram-negative E. coli and Gram-positive B. subtilis bacterial strains showed a 5.0, 6.4, and 5.7 log reduction in activity after 30, 20 and 10 min, respectively. Antimicrobial activity in the alloy samples showed a strong dependence on the composition, with the log reduction scaling directly with the Cu content. Concentration of Cu by phase separation after annealing improved activity in some of the samples. The results motivate a variety of themes which can be leveraged to design ideal antimicrobial surfaces.
Subject(s)
Anti-Infective Agents , COVID-19 , Humans , Alloys/pharmacology , Escherichia coli , SARS-CoV-2 , Anti-Infective Agents/pharmacologyABSTRACT
Viral infection often causes severe damage to the lungs, leading to the appearance of ectopic basal cells (EBCs) and tuft cells in the lung parenchyma. Thus far, the roles of these ectopic epithelial cells in alveolar regeneration remain controversial. Here, we confirm that the ectopic tuft cells are originated from EBCs in mouse models and COVID-19 lungs. The differentiation of tuft cells from EBCs is promoted by Wnt inhibition while suppressed by Notch inhibition. Although progenitor functions have been suggested in other organs, pulmonary tuft cells don't proliferate or give rise to other cell lineages. Consistent with previous reports, Trp63CreERT2 and KRT5-CreERT2-labeled ectopic EBCs do not exhibit alveolar regeneration potential. Intriguingly, when tamoxifen was administrated post-viral infection, Trp63CreERT2 but not KRT5-CreERT2 labels islands of alveolar epithelial cells that are negative for EBC biomarkers. Furthermore, germline deletion of Trpm5 significantly increases the contribution of Trp63CreERT2-labeled cells to the alveolar epithelium. Although Trpm5 is known to regulate tuft cell development, complete ablation of tuft cell production fails to improve alveolar regeneration in Pou2f3-/- mice, implying that Trpm5 promotes alveolar epithelial regeneration through a mechanism independent of tuft cells.
Subject(s)
COVID-19 , Animals , Biomarkers , Cell Differentiation , Cell Lineage , Epithelial Cells , Mice , Tamoxifen/pharmacology , Trans-ActivatorsABSTRACT
Objectives: The study aimed at analyzing the prevalence of five psychological outcomes (depression, anxiety, stress, post-traumatic stress disorder (PTSD), and suicidal ideation) among Chinese healthcare workers (HCWs), and measured the total possible negative psychological impact 1 year after the COVID-19 initial outbreak. Methods: A cross-sectional nationwide multi-center study was performed between November 2020 and March 2021 in China. A self-report questionnaire was applied, and three psychological scales were used. Binary logistic regression was performed to analyze the risk factors associated with each psychological outcome. Results: The findings demonstrated that the COVID-19 pandemic had a negative psychological impact on HCWs, which was still evident 1 year after the initial outbreak. Nurses showed higher depression and anxiety than other HCWs. Female gender, passive coping, long working hours, having a chronic disease, and experiencing violence, among other factors, were all risk factors for psychological impairment. Conclusion: Developing and promoting programs to improve mental health among HCWs, and identifying those who might need psychological support is still relevant 1 year after the initial outbreak.