Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Sensors (Basel) ; 22(4)2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1715636


A graphene-based surface plasmon resonance (SPR) prism coupler sensor is proposed for the rapid detection of immunoglobulin G (IgG) antibodies. The feasibility of the proposed sensor is demonstrated by measuring the IgG concentration in phantom mouse and human serum solutions over the range of 0-250 ng/mL. The results show that the circular dichroism and principal fast axis angle of linear birefringence increase in line with increases in IgG concentration over the considered range. Moreover, the proposed device has a resolution of 5-10 ng/mL and a response time of less than three minutes. In general, the sensor provides a promising approach for IgG detection and has significant potential for rapid infectious viral disease testing applications.

Graphite , Surface Plasmon Resonance , Animals , Birefringence , Gold , Immunoglobulin G , Mice
Environ Res ; 197: 111096, 2021 06.
Article in English | MEDLINE | ID: covidwho-1163738


This study is motivated by the amplified transmission rates of the SAR-CoV-2 virus in areas with high concentrations of fine particulates (PM2.5) as reported in northern Italy and Mexico. To develop a deeper understanding of the contribution of PM2.5 in the propagation of the SAR-CoV-2 virus in the population, the deposition patterns and efficiencies (DEs) of PM2.5 laced with the virus in healthy and asthmatic airways are studied. Physiologically correct 3-D models for generations 10-12 of the human airways are applied to carry out a numerical analysis of two-phase flow for full breathing cycles. Two concentrations of PM2.5 are applied for the simulation, i.e., 30 µg⋅m-3 and 80 µg⋅m-3 for three breathing statuses, i.e., rest, light exercise, and moderate activity. All the PM2.5 injected into the control volume is assumed to be 100% contaminated with the SAR-CoV-2 virus. Skewed air-flow phenomena at the bifurcations are proportional to the Reynolds number at the inlet, and their intensity in the asthmatic airway exceeded that of the healthy one. Upon exhalation, two peak air-flow vectors from daughter branches combine to form one big vector in the parent generation. Asthmatic airway models has higher deposition efficiencies (DEs) for contaminated PM2.5 as compared to the healthy one. Higher DEs arise in the asthmatic airway model due to complex secondary flows which increase the impaction of contaminated PM2.5 on airways' walls.

Asthma , Lung , Computer Simulation , Humans , Italy , Mexico , Models, Biological , Particulate Matter/toxicity