ABSTRACT
As of 25thJuly, 2022, global Disease burden of 575,430,244 confirmed cases and over 6,403,511 deaths have been attributed to coronavirus disease 2019 (COVID-19). Co-infections/secondary infections continue to plague patients around the world as result of the co-morbidities like diabetes mellitus, biochemical changes caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) especially significant elevation in free iron levels, immune suppression caused by SARS-CoV-2, and indiscriminate use of systemic corticosteroids for the treatment of severe COVID-19 disease. In such circumstances, opportunistic fungal infections pose significant challenge for COVID-19 disease therapy in patients with other co-morbidities. Although COVID-19-associated Mucormycosis (CAM) has been widely recognized, currently extensive research is being conducted on mucormycosis. It has been widely agreed that patients undergoing corticosteroid therapy are highly susceptible for CAM, henceforth high index of screening and intensive care and management is need of an hour in order to have favourable outcomes in these patients. Diagnosis in such cases is often delayed and eventually the disease progresses quickly which poses added burden to clinician and increases patient load in critical care units of hospitals. A vast perusal of literature indicated that patients with diabetes mellitus and those with other co-morbidities might be highly vulnerable to develop mucormycosis. In the present work, the case series of three patients presented at Chest Disease Hospital Srinagar, Jammu and Kashmir infected with CAM has been described with their epidemiological data in supplementary section. All these cases were found to be affected with co-morbidity of Diabetes Mellitus (DM) and were under corticosteroid therapy. Furthermore, given the significant death rate linked with mucormycosis and the growing understanding of the diseases significance, systematic review of the literature on CAM has been discussed and we have attempted to discuss emerging CAM and related aspects of the disease.
ABSTRACT
Iodine complexes have known antimicrobial properties along with reported in-vitro antiviral activity for several viruses. Renessans is one such product with iodine complexes and ascorbic acid. The present study was designed to determine its efficacy for SARS-CoV-2 in Rhesus macaque. Rhesus macaque were assigned to: A) prophylactic group (n = 3), (B) treatment group (n = 3), (C) infection control group (n = 4), and (D) negative control group (n = 4). Groups A, B, and C were challenged with 2 × 106 TCID of SARS-CoV-2. The prophylactic group (A) was administered Renessans from 5 days before infection till 8 days postinfection (DPI). The treatment group (B) was administered Renessans from 3 till 8 DPI. Group C was administered water-insoluble fractions only. Nasal swabs from all monkeys of groups A, B, and C remained positive for SARS-CoV-2 till 2 and 7 DPI, while the swabs became negative for groups A and B at 14 DPI. Likewise, fecal matter of monkeys in group A returned negative results during the experiment, while that of group B had significantly decreased viral load (101.5 genome copies/mL) compared to group C (103 genome copies/mL). Hence, it is concluded that Renessans has in-vivo SARS-CoV-2 activity and may result in early clearance of SARS-CoV-2.
ABSTRACT
Development of lab-on-a-chip (LOC) system based on integration of reverse transcription loop-mediated isothermal amplification (RT-LAMP) and microfluidic technology is expected to speed up SARS-CoV-2 diagnostics allowing early intervention. In the current work, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and RT-LAMP assays were performed on extracted RNA of seven wastewater samples from COVID-19 hotspots. RTLAMP assay was also performed on wastewater samples without RNA extraction. Current detection of SARS-CoV-2 is mainly by RT-qPCR of ORF (ORF1ab) and N genes so we targeted both to find the best target gene for SARS-CoV-2 detection. We also performed RT-LAMP with/without RNA extraction inside microfluidic device to target both genes. Positivity rates of RT-qPCR and RT-LAMP performed on extracted RNA were 100.0% (7/7) and 85.7% (6/7), respectively. RT-qPCR results revealed that all 7 wastewater samples were positive for N gene (Ct range 37-39), and negative for ORF1ab, suggesting that N gene could be the best target gene for SARS-CoV-2 detection. RT-LAMP of N and ORF (ORF1a) genes performed on wastewater samples without RNA extraction indicated that all 7 samples remains pink (negative). The color remains pink in all microchannels except microchannels which subjected to RT-LAMP for targeting N region after RNA extraction (yellow color) in 6 out of 7 samples. This study shows that SARS-CoV-2 was successfully detected from wastewater samples using RT-LAMP in microfluidic chips. This study brings the novelty involving the use of wastewater samples for detection of SARS-CoV-2 without previous virus concentration and with/without RNA extraction.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Point-of-Care Systems , Microfluidics , Sensitivity and Specificity , RNAABSTRACT
The COVID-19 pandemic is striking the world with serious public health and socioeconomic complications. The pandemic has influenced all forms of daily life, including educational institutions. Therefore, this cross-sectional survey was conducted to understand knowledge, attitudes, and practices related to COVID-19 among the students of the University of Veterinary and Animal Sciences, Lahore. The data was collected using an online self-directed questionnaire. The survey form includes six items about sociodemographic characteristics, 14 knowledge-based questions, seven questions on attitude, and eight questions on practices. The sample number was calculated using the Raosoft sample size calculator. A total number of 3,854 students, including 1,823 men and 2,031 women, were engaged in this survey, having student representation from all the provinces in the country. The data were analyzed using a chi-square test. A total of 97% of the students knew that the etiological agent of COVID-19 is a virus and that it is a disease of the respiratory system (94%). Many students kept visiting their relatives during the lockdown (45%), and their relatives kept visiting them at home (59%). The responses from the students varied a lot on specific questions about the transmission of the virus. Women tended to have less information regarding precautionary travel measures (p < 0.01), but supplemental knowledge of prevention of disease transmission from positive patients (p < 0.01). Conclusively, the majority of the university students surveyed had imperative knowledge, a good attitude, and active practice in response to the COVID-19 outbreak. Moreover, the KAP scores have varied by demography, gender, and the number of family members. Therefore, continuous awareness of preventative behaviors should be disseminated regularly in emergencies.
Subject(s)
COVID-19 , Communicable Disease Control , Cross-Sectional Studies , Female , Health Knowledge, Attitudes, Practice , Humans , Male , Pakistan/epidemiology , Pandemics , SARS-CoV-2 , Students , UniversitiesABSTRACT
Since the emergence of COVID-19 pandemic in China in late 2019, scientists are striving hard to explore non-toxic, viable anti-SARS-CoV-2 compounds or medicines. We determined In vitro anti-SARS-CoV-2 activity of oral formulations (syrup and capsule)of an Iodine-complex (Renessans). First, cell cytotoxicity of Renessans on the Vero cells was determined using MTT assay. Afterwards, the antiviral activity of Renessans was determined using viral inhibition assays and TCID50. For this, nontoxic concentrations of the Renessans were used. The results showed that Renessans is nontoxic to the cells up to 50 µg/mL. At 1.5 µg/mL concentration, SARS-CoV-2 production was significantly reduced to 101.43 TCID50 and 101.58 TCID50 for the syrup and capsule, respectively, as compare to virus infected control cells 106.08 TCID50 and we found the dose dependent inhibition of virus replication in the presence of Renessans. Renessans inhibited SARS-CoV-2 with an EC50 value of 0.425 µg/mL and 0.505 µg/mL for syrup and capsule, respectively. Furthermore, there was no virus detected at concentration of 50 µg/mL of Renessans. This study indicates that Renessans, containing iodine, have potential activity against SARS-CoV-2 which needs to be further investigated in human clinical trials.