Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Year range
Commun Biol ; 5(1): 491, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1947506


The furin cleavage site (FCS) in SARS-CoV-2 is unique within the Severe acute respiratory syndrome-related coronavirus (SrC) species. We re-assessed diverse SrC from European horseshoe bats and analyzed the spike-encoding genomic region harboring the FCS in SARS-CoV-2. We reveal molecular features in SrC such as purine richness and RNA secondary structures that resemble those required for FCS acquisition in avian influenza viruses. We discuss the potential acquisition of FCS through molecular mechanisms such as nucleotide substitution, insertion, or recombination, and show that a single nucleotide exchange in two European bat-associated SrC may suffice to enable furin cleavage. Furthermore, we show that FCS occurrence is variable in bat- and rodent-borne counterparts of human coronaviruses. Our results suggest that furin cleavage sites can be acquired in SrC via conserved molecular mechanisms known in other reservoir-bound RNA viruses and thus support a natural origin of SARS-CoV-2.

COVID-19 , Chiroptera , Animals , COVID-19/genetics , Chiroptera/genetics , Furin/genetics , Genome, Viral , Genomics , Nucleotides , SARS-CoV-2/genetics
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296961


The furin cleavage site in SARS-CoV-2 is unique within the Severe acute respiratory syndrome-related coronavirus (SrC) species. We re-assessed diverse SrC from European horseshoe bats and reveal molecular determinants such as purine richness, RNA secondary structures and viral quasispecies potentially enabling furin cleavage. Furin cleavage thus likely emerged from the SrC bat reservoir via molecular mechanisms conserved across reservoir-bound RNA viruses, supporting a natural origin of SARS-CoV-2.

mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: covidwho-1066819


Bats host many viruses pathogenic to humans, and increasing evidence suggests that rotavirus A (RVA) also belongs to this list. Rotaviruses cause diarrheal disease in many mammals and birds, and their segmented genomes allow them to reassort and increase their genetic diversity. Eighteen out of 2,142 bat fecal samples (0.8%) collected from Europe, Central America, and Africa were PCR-positive for RVA, and 11 of those were fully characterized using viral metagenomics. Upon contrasting their genomes with publicly available data, at least 7 distinct bat RVA genotype constellations (GCs) were identified, which included evidence of reassortments and 6 novel genotypes. Some of these constellations are spread across the world, whereas others appear to be geographically restricted. Our analyses also suggest that several unusual human and equine RVA strains might be of bat RVA origin, based on their phylogenetic clustering, despite various levels of nucleotide sequence identities between them. Although SA11 is one of the most widely used reference strains for RVA research and forms the backbone of a reverse genetics system, its origin remained enigmatic. Remarkably, the majority of the genotypes of SA11-like strains were shared with Gabonese bat RVAs, suggesting a potential common origin. Overall, our findings suggest an underexplored genetic diversity of RVAs in bats, which is likely only the tip of the iceberg. Increasing contact between humans and bat wildlife will further increase the zoonosis risk, which warrants closer attention to these viruses.IMPORTANCE The increased research on bat coronaviruses after severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) allowed the very rapid identification of SARS-CoV-2. This is an excellent example of the importance of knowing viruses harbored by wildlife in general, and bats in particular, for global preparedness against emerging viral pathogens. The current effort to characterize bat rotavirus strains from 3 continents sheds light on the vast genetic diversity of rotaviruses and also hints at a bat origin for several atypical rotaviruses in humans and animals, implying that zoonoses of bat rotaviruses might occur more frequently than currently realized.

Chiroptera/virology , Rotavirus Infections/transmission , Rotavirus Infections/virology , Rotavirus/genetics , Zoonoses/transmission , Zoonoses/virology , Animals , COVID-19/transmission , COVID-19/virology , Diarrhea/virology , Genetic Variation , Genome, Viral , Genotype , Horses , Humans , Metagenomics , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Phylogeny , SARS-CoV-2/isolation & purification