Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330178


The SARS-CoV-2 non-structural protein 14 (NSP14) is a dual function enzyme containing an N-terminal exonuclease domain (ExoN) and C-terminal Guanine-N7-methyltransferase (N7-MTase) domain. Both enzymatic activities appear to be essential for the viral life cycle and thus may be targeted for anti-viral therapeutics. NSP14 forms a stable complex with the SARS-CoV-2 zinc binding protein NSP10, and this interaction greatly enhances the nuclease but not the methyltransferase activity. In this study, we have determined the crystal structure of SARS-CoV-2 NSP14 in the absence of NSP10 to 1.7 Å resolution. Comparisons of this structure with the structure of NSP14/NSP10 complexes solved to date reveal significant conformational changes that occur within the NSP14 ExoN domain upon binding of NSP10, including significant movements and helix to coil transitions that facilitate the formation of the ExoN active site and provide an explanation of the stimulation of nuclease activity by NSP10. Conformational changes are also seen in the MTase active site within a SAM/SAH interacting loop that plays a key role in viral mRNA capping. We have also determined the structure of NSP14 in complex with cap analogue 7Me GpppG, offering new insights into MTase enzymatic activity. We have used our high resolution crystals to perform X-ray fragment screening of NSP14, revealing 72 hits bound to potential sites of inhibition of the ExoN and MTase domains. These structures serve as excellent starting point tools for structure guided development and optimization of NSP14 inhibitors that may be used to treat COVID-19 and potentially other future viral threats.

Nucleic Acids Res ; 50(3): 1484-1500, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1624985


The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14-nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14-nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14-nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3'-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14-nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12-nsp7-nsp8 (nsp12-7-8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14-nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14-nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.

Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Exoribonucleases/metabolism , Genome, Viral/genetics , Genomic Instability , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Exoribonucleases/antagonists & inhibitors , Genome, Viral/drug effects , Genomic Instability/drug effects , Genomic Instability/genetics , HIV Integrase Inhibitors/pharmacology , Isoindoles/pharmacology , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Organoselenium Compounds/pharmacology , RNA, Viral/biosynthesis , RNA, Viral/genetics , Raltegravir Potassium/pharmacology , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Virus Replication/drug effects , Virus Replication/genetics
Nat Commun ; 12(1): 4848, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1354102


There is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two "druggable" pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents.

Methyltransferases/chemistry , RNA Helicases/chemistry , SARS-CoV-2/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Apoenzymes/chemistry , Apoenzymes/metabolism , Binding Sites , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Models, Molecular , Phosphates/chemistry , Phosphates/metabolism , Protein Conformation , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , SARS-CoV-2/enzymology , Structure-Activity Relationship , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism