Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22277481

ABSTRACT

Japan has reported a small number of COVID-19 cases relative to other countries. Because not all infected people receive diagnostic tests for COVID-19, the reported number of COVID-19 cases must be lower than the actual number of infections. Assessments of the presence of antibodies against the spike protein of SARS-CoV-2 can retrospectively determine the history of natural infection and vaccination. In this study, we assessed SARS-CoV-2 seroprevalence by analyzing over 60,000 samples collected in Japan from February 2020 to March 2022. The results showed that about 5% of the Japanese population had been infected with the virus by January 2021. The seroprevalence increased with the administration of vaccinations to adults; however, among the elderly, it was not as high as the vaccination rate, probably due to poor immune responses to the vaccines and waning immunity. The infection was spread during the epidemic waves caused by the SARS-CoV-2 Delta and Omicron variants among children who were not eligible for vaccination. Nevertheless, their seroprevalence was as low as 10% as of March 2022. Our study underscores the low incidence of SARS-CoV-2 infection in Japan and the effects of vaccination on immunity at the population level.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-496751

ABSTRACT

The use of therapeutic neutralizing antibodies against SARS-CoV-2 infection has been highly effective. However, there remain few practical antibodies against viruses that are acquiring mutations. In this study, we created 494 monoclonal antibodies from COVID-19-convalescent patients, and identified antibodies that exhibited comparable neutralizing ability to clinically used antibodies in the neutralization assay using pseudovirus and authentic virus including variants of concerns. These antibodies have different profiles against various mutations, which were confirmed by cell-based assay and cryo-electron microscopy. To prevent antibody-dependent enhancement, N297A modification was introduced, and showed a reduction of lung viral RNAs by therapeutic administration in a hamster model. In addition, an antibody cocktail consisting of three antibodies was also administered therapeutically to a macaque model, which resulted in reduced viral titers of swabs and lungs and reduced lung tissue damage scores. These results showed that our antibodies have sufficient antiviral activity as therapeutic candidates.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-492045

ABSTRACT

Betacoronaviruses have caused 3 outbreaks in the past 2 decades. SARS-CoV-2, in particular, has caused a serious pandemic. As the betacoronaviruses are considered to originate from bats, surveillance of bat betacoronaviruses is crucial for understanding the mechanism of cross-species transition and potential for future outbreaks. We previously detected and characterized a SARS-CoV-2-related sarbecovirus, Rc-o319, from Rhinolophus cornutus in Japan. Here, we detected several bat sarbecoviruses of the SARS-CoV-2 clade from R. cornutus in multiple locations in Japan, and successfully isolated them using Vero/TMPRSS2 cells stably expressing R. cornutus ACE2 (Vero-RcACE2). The coding sequences of S1 region varied among isolates, whereas other genetic regions were highly conserved. Isolates were efficiently grown in Vero-RcACE2 cells, but did not replicate in Vero/TMPRSS2 cells stably expressing human ACE2, suggesting a narrow host range. Further long-term epidemiological studies of sarbecoviruses in wildlife are expected to facilitate the assessment of the risk of their spillover potential.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-22274196

ABSTRACT

The detailed mechanisms of COVID-19 infection pathology remain poorly understood. To improve our understanding of SARS-CoV-2 pathology, we performed a multi-omics analysis of an immunologically naive SARS-CoV-2 clinical cohort from the plasma of uninfected controls, mild, and severe infections. A comparison of healthy controls and patient samples showed activation of neutrophil degranulation pathways and formation of neutrophil extracellular trap (NET) complexes that were activated in a subset of the mild infections and more prevalent in severe infections (containing multiple NET proteins in individual patient samples). As a potential mechanism to suppress NET formation, multiple redox enzymes were elevated in the mild and severe symptom population. Analysis of metabolites from the same cohort showed a 24- and 60-fold elevation in plasma L-cystine, the oxidized form of cysteine, which is a substrate of the powerful antioxidant glutathione, in mild and severe patients, respectively. Unique to patients with mild infections, the carnosine dipeptidase modifying enzyme (CNDP1) was up-regulated. The strong protein and metabolite oxidation signatures suggest multiple compensatory pathways working to suppress oxidation and NET formation in SARS-CoV-2 infections.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-22272784

ABSTRACT

Prolonged infections in immunocompromised individuals may be a source for novel SARS-CoV-2 variants, particularly when both the immune system and antiviral therapy fail to clear the infection, thereby promoting adaptation. Here we describe an approximately 16-month case of SARS-CoV-2 infection in an immunocompromised individual. Following monotherapy with the monoclonal antibody Bamlanivimab, the individuals virus was resistant to this antibody via a globally unique Spike amino acid variant (E484T) that evolved from E484A earlier in infection. With the emergence and spread of the Omicron Variant of Concern, which also contains Spike E484A, E484T may arise again as an antibody-resistant derivative of E484A.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-484787

ABSTRACT

Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants1-4, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2). Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human Fc{gamma} R transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-484208

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 19 (COVID-19) pandemic. Despite its urgency, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis and its ability to antagonize innate immune responses. SARS-CoV-2 leads to shutoff of cellular protein synthesis and over-expression of nsp1, a central shutoff factor in coronaviruses, inhibits cellular gene translation. However, the diverse molecular mechanisms nsp1 employs as well as its functional importance in infection are still unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant in which nsp1 does not bind ribosomes, we untangle the effects of nsp1. We uncover that nsp1, through inhibition of translation and induction of mRNA degradation, is the main driver of host shutoff during SARS-CoV-2 infection. Furthermore, we find the propagation of nsp1 mutant virus is inhibited specifically in cells with intact interferon (IFN) response as well as in-vivo, in infected hamsters, and this attenuation is associated with stronger induction of type I IFN response. This illustrates that nsp1 shutoff activity has an essential role mainly in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover the central role it plays in SARS-CoV-2 pathogenesis, explicitly through blockage of the IFN response.

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-477987

ABSTRACT

During the SARS-CoV-2 pandemic, multiple variants with differing amounts of escape from pre-existing immunity have emerged, causing concerns about continued protection. Here, we use antigenic cartography to quantify and visualize the antigenic relationships among 16 SARS-CoV-2 variants titrated against serum samples taken post-vaccination and post-infection with seven different variants. We find major antigenic differences caused by substitutions at spike positions 417, 452, 484, and possibly 501. B.1.1.529 (Omicron BA.1) showed the highest escape from all sera tested. Visualization of serological responses as antibody landscapes shows how reactivity clusters in different regions of antigenic space. We find changes in immunodominance of different spike regions depending on the variant an individual was exposed to, with implications for variant risk assessment and vaccine strain selection. One sentence summaryAntigenic Cartography of SARS-CoV-2 variants reveals amino acid substitutions governing immune escape and immunodominance patterns.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-477296

ABSTRACT

Although vaccines and monoclonal antibody countermeasures have reduced the morbidity and mortality associated with SARS-CoV-2 infection, variants with constellations of mutations in the spike gene threaten their efficacy. Accordingly, antiviral interventions that are resistant to further virus evolution are needed. The host-derived cytokine IFN-{lambda} has been proposed as a possible treatment based on correlative studies in human COVID-19 patients. Here, we show IFN-{lambda} protects against SARS-CoV-2 B.1.351 (Beta) and B.1.1.529 (Omicron)variants in three strains of conventional and human ACE2 transgenic mice. Prophylaxis or therapy with nasally-delivered IFN-{lambda}2 limited infection of historical or variant (B.1.351 and B.1.1.529) SARS-CoV-2 strains in the upper and lower respiratory tracts without causing excessive inflammation. In the lung, IFN-{lambda} was produced preferentially in epithelial cells and acted on radio-resistant cells to protect against of SARS-CoV-2 infection. Thus, inhaled IFN-{lambda} may have promise as a treatment for evolving SARS-CoV-2 variants that develop resistance to antibody-based countermeasures.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-474743

ABSTRACT

The SARS-CoV-2 Omicron (B.1.1.529) variant has proven highly transmissible and has outcompeted the Delta variant in many regions of the world1. Early reports have also suggested that Omicron may result in less severe clinical disease in humans. Here we show that Omicron is less pathogenic than prior SARS-CoV-2 variants in Syrian golden hamsters. Infection of hamsters with the SARS-CoV-2 WA1/2020, Alpha, Beta, or Delta strains led to 4-10% weight loss by day 4 and 10-17% weight loss by day 6, as expected2,3. In contrast, infection of hamsters with two different Omicron challenge stocks did not result in any detectable weight loss, even at high challenge doses. Omicron infection still led to substantial viral replication in both the upper and lower respiratory tracts and pulmonary pathology, but with a trend towards higher viral loads in nasal turbinates and lower viral loads in lung parenchyma compared with WA1/2020 infection. These data suggest that the SARS-CoV-2 Omicron variant may result in more robust upper respiratory tract infection but less severe lower respiratory tract clinical disease compared with prior SARS-CoV-2 variants.

11.
Preprint in English | bioRxiv | ID: ppbiorxiv-474432

ABSTRACT

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, viral variants with greater transmissibility or immune evasion properties have arisen, which could jeopardize recently deployed vaccine and antibody-based countermeasures. Here, we evaluated in mice and hamsters the efficacy of preclinical non-GMP Moderna mRNA vaccine (mRNA-1273) and the Johnson & Johnson recombinant adenoviral-vectored vaccine (Ad26.COV2.S) against the B.1.621 (Mu) South American variant of SARS-CoV-2, which contains spike mutations T95I, Y144S, Y145N, R346K, E484K, N501Y, D614G, P681H, and D950N. Immunization of 129S2 and K18-human ACE2 transgenic mice with mRNA-1273 vaccine protected against weight loss, lung infection, and lung pathology after challenge with B.1.621 or WA1/2020 N501Y/D614G SARS-CoV-2 strain. Similarly, immunization of 129S2 mice and Syrian hamsters with a high dose of Ad26.COV2.S reduced lung infection after B.1.621 virus challenge. Thus, immunity induced by mRNA-1273 or Ad26.COV2.S vaccines can protect against the B.1.621 variant of SARS-CoV-2 in multiple animal models.

12.
Preprint in English | bioRxiv | ID: ppbiorxiv-472828

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global COVID-19 pandemic resulting in millions of deaths worldwide. Despite the development and deployment of highly effective antibody and vaccine countermeasures, rapidly-spreading SARS-CoV-2 variants with mutations at key antigenic sites in the spike protein jeopardize their efficacy. Indeed, the recent emergence of the highly-transmissible B.1.1.529 Omicron variant is especially concerning because of the number of mutations, deletions, and insertions in the spike protein. Here, using a panel of anti-receptor binding domain (RBD) monoclonal antibodies (mAbs) corresponding to those with emergency use authorization (EUA) or in advanced clinical development by Vir Biotechnology (S309, the parent mAbs of VIR-7381), AstraZeneca (COV2-2196 and COV2-2130, the parent mAbs of AZD8895 and AZD1061), Regeneron (REGN10933 and REGN10987), Lilly (LY-CoV555 and LY-CoV016), and Celltrion (CT-P59), we report the impact on neutralization of a prevailing, infectious B.1.1.529 Omicron isolate compared to a historical WA1/2020 D614G strain. Several highly neutralizing mAbs (LY-CoV555, LY-CoV016, REGN10933, REGN10987, and CT-P59) completely lost inhibitory activity against B.1.1.529 virus in both Vero-TMPRSS2 and Vero-hACE2-TMPRSS2 cells, whereas others were reduced ([~]12-fold decrease, COV2-2196 and COV2-2130 combination) or minimally affected (S309). Our results suggest that several, but not all, of the antibody products in clinical use will lose efficacy against the B.1.1.529 Omicron variant and related strains.

13.
Preprint in English | medRxiv | ID: ppmedrxiv-21267809

ABSTRACT

Reduced COVID-19 vaccine effectiveness (VE) has been observed with increasing predominance of the Delta variant. In a prospective rural community cohort of 1265 participants, VE against symptomatic and asymptomatic SARS-CoV-2 infection was 56% for mRNA COVID-19 vaccines.

14.
Preprint in English | bioRxiv | ID: ppbiorxiv-472269

ABSTRACT

The recently emerged SARS-CoV-2 Omicron variant harbors 37 amino acid substitutions in the spike (S) protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody therapeutics. Here, we show that the Omicron RBD binds to human ACE2 with enhanced affinity relative to the Wuhan-Hu-1 RBD and acquires binding to mouse ACE2. Severe reductions of plasma neutralizing activity were observed against Omicron compared to the ancestral pseudovirus for vaccinated and convalescent individuals. Most (26 out of 29) receptor-binding motif (RBM)-directed monoclonal antibodies (mAbs) lost in vitro neutralizing activity against Omicron, with only three mAbs, including the ACE2-mimicking S2K146 mAb1, retaining unaltered potency. Furthermore, a fraction of broadly neutralizing sarbecovirus mAbs recognizing antigenic sites outside the RBM, including sotrovimab2, S2X2593 and S2H974, neutralized Omicron. The magnitude of Omicron-mediated immune evasion and the acquisition of binding to mouse ACE2 mark a major SARS-CoV-2 mutational shift. Broadly neutralizing sarbecovirus mAbs recognizing epitopes conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.

15.
Preprint in English | bioRxiv | ID: ppbiorxiv-462488

ABSTRACT

The development of the highly efficacious mRNA vaccines in less than a year since the emergence of SARS-CoV-2 represents a landmark in vaccinology. However, reports of waning vaccine efficacy, coupled with the emergence of variants of concern that are resistant to antibody neutralization, have raised concerns about the potential lack of durability of immunity to vaccination. We recently reported findings from a comprehensive analysis of innate and adaptive immune responses in 56 healthy volunteers who received two doses of the BNT162b2 vaccination. Here, we analyzed antibody responses to the homologous Wu strain as well as several variants of concern, including the emerging Mu (B.1.621) variant, and T cell responses in a subset of these volunteers at six months (day 210 post-primary vaccination) after the second dose. Our data demonstrate a substantial waning of antibody responses and T cell immunity to SARS-CoV-2 and its variants, at 6 months following the second immunization with the BNT162b2 vaccine. Notably, a significant proportion of vaccinees have neutralizing titers below the detection limit, and suggest a 3rd booster immunization might be warranted to enhance the antibody titers and T cell responses.

16.
Preprint in English | medRxiv | ID: ppmedrxiv-21263523

ABSTRACT

ObjectivesAssays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method to reduce the workload of these assays, and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. MethodsWe apply Bayesian hierarchical modelling to ELISA measurements of human serum samples against SARS-CoV-2 and HCoV antigens. ResultsInflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from three spread-out dilutions correlated with those inferred from eight consecutive dilutions with an R2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. ConclusionsIn serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis.

17.
Preprint in English | medRxiv | ID: ppmedrxiv-21261387

ABSTRACT

The SARS-CoV-2 Delta Variant of Concern is highly transmissible and contains mutations that confer partial immune escape. The emergence of Delta in North America caused the first surge in COVID-19 cases after SARS-CoV-2 vaccines became widely available. To determine whether individuals infected despite vaccination might be capable of transmitting SARS-CoV-2, we compared RT-PCR cycle threshold (Ct) data from 20,431 test-positive anterior nasal swab specimens from fully vaccinated (n = 9,347) or unvaccinated (n=11,084) individuals tested at a single commercial laboratory during the interval 28 June - 1 December 2021 when Delta variants were predominant. We observed no significant effect of vaccine status alone on Ct value, nor when controlling for vaccine product or sex. Testing a subset of low-Ct (<25) samples, we detected infectious virus at similar rates, and at similar titers, in specimens from vaccinated and unvaccinated individuals. These data indicate that vaccinated individuals infected with Delta variants are capable of shedding infectious SARS-CoV-2 and could play a role in spreading COVID-19.

18.
Preprint in English | bioRxiv | ID: ppbiorxiv-454437

ABSTRACT

Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to a bystander effect: the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) that beat spontaneously. These cardiomyocytes express the angiotensin I converting-enzyme 2 (ACE2) receptor and a subset of the proteases that mediate spike protein cleavage in the lungs, but not transmembrane protease serine 2 (TMPRSS2). Nevertheless, SARS-CoV-2 infection was productive: viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CM, smooth walled exocytic vesicles contained numerous 65-90 nm particles with typical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand the mechanisms of SARS-CoV-2 spread in hiPSC-CM we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm signal from cell to cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin abolished cell fusion. A spike mutant with the single amino acid change R682S that inactivates the furin cleavage site was fusion inactive. Thus, SARS-CoV-2 can replicate efficiently in hiPSC-CM and furin activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform provides an opportunity for target-based drug discovery in cardiac COVID-19. Author SummaryIt is unclear whether the cardiac complications frequently observed in COVID-19 patients are due exclusively to systemic inflammation and thrombosis. Viral replication has occasionally been confirmed in cardiac tissue, but rigorous analyses are restricted to rare autopsy materials. Moreover, there are few animal models to study cardiovascular complications of coronavirus infections. To overcome these limitations, we developed an in vitro model of SARS-CoV-2 spread in induced pluripotent stem cell-derived cardiomyocytes. In these cells, infection is highly productive: viral transcription levels exceed those documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread we expressed a fluorescent version of its spike protein that allowed to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin cleavage site lost cytopathic function. The spike protein of the Middle East Respiratory Syndrome (MERS) coronavirus drove cardiomyocyte fusion with slow kinetics, whereas the spike proteins of SARS-CoV and the respiratory coronavirus 229E were inactive. These fusion activities correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 has the potential to cause cardiac damage by fusing cardiomyocytes.

19.
Preprint in English | bioRxiv | ID: ppbiorxiv-450453

ABSTRACT

Despite various attempts to treat SARS-CoV-2-infected patients with COVID-19-convalescent plasmas, neither appropriate approach nor clinical utility has been established. We examined the efficacy of administration of highly-neutralizing COVID-19-convalescent plasma (hn-plasmas) and such plasma-derived IgG administration using the Syrian hamster COVID-19 model. Two hn-plasmas, which were in the best 1% of 340 neutralizing-activity-determined convalescent plasma samples, were intraperitoneally administered to SARS-CoV-2-infected hamsters, resulting in significant reduction of viral titers in lungs by up to 32-fold as compared to the viral titers in hamsters receiving control non-neutralizing plasma, while with two moderately neutralizing plasmas (mn-plasmas) administered, viral titer reduction was by up to 6-fold. IgG fractions purified from the two hn-plasmas also reduced viral titers in lungs than those from the two mn-plasmas. The severity of lung lesions seen in hamsters receiving hn-plasmas was minimal to moderate as assessed using micro-computerized tomography, which histological examination confirmed. Western blotting revealed that all four COVID-19-convalescent-plasmas variably contained antibodies against SARS-CoV-2 components including the receptor-binding domain and S1 domain. The present data strongly suggest that administering potent-neutralizing-activity-confirmed COVID-19-convalescent plasmas would be efficacious in treating patients with COVID-19. ImportanceConvalescent plasmas obtained from patients, who recovered from a specific infection, have been used as agents to treat other patients infected with the very pathogen. To treat using convalescent plasmas, despite that more than 10 randomized-controlled-clinical-trials have been conducted and more than 100 studies are currently ongoing, the effects of convalescent plasma against COVID-19 remained uncertain. On the other hand, certain COVID-19 vaccines have been shown to reduce the clinical COVID-19 onset by 94-95%, for which the elicited SARS-CoV-2-neutralizing antibodies are apparently directly responsible. Here, we demonstrate that highly-neutralizing-effect-confirmed convalescent plasmas significantly reduce the viral titers in the lung of SARS-CoV-2-infected Syrian hamsters and block the development of virally-induced lung lesions. The present data provide a proof-of-concept that the presence of highly-neutralizing antibody in COVID-19-convalescent plasmas is directly responsible for the reduction of viral replication and support the use of highly-neutralizing antibody-containing plasmas in COVID-19 therapy with convalescent plasmas.

20.
Preprint in English | bioRxiv | ID: ppbiorxiv-448820

ABSTRACT

During the current SARS-CoV-2 pandemic, a variety of mutations have been accumulated in the viral genome, and currently, four variants of concerns (VOCs) are considered as the hazardous SARS-CoV-2 variants to the human society1. The newly emerging VOC, the B.1.617.2/Delta variant, closely associates with a huge COVID-19 surge in India in Spring 20212. However, its virological property remains unclear. Here, we show that the B.1.617.2/Delta variant is highly fusogenic, and notably, more pathogenic than prototypic SARS-CoV-2 in infected hamsters. The P681R mutation in the spike protein, which is highly conserved in this lineage, facilitates the spike protein cleavage and enhances viral fusogenicity. Moreover, we demonstrate that the P681R-bearing virus exhibits higher pathogenicity than the parental virus. Our data suggest that the P681R mutation is a hallmark that characterizes the virological phenotype of the B.1.617.2/Delta variant and is closely associated with enhanced pathogenicity.

SELECTION OF CITATIONS
SEARCH DETAIL