Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell ; 185(5): 881-895.e20, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1649960

ABSTRACT

Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific auto-antibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes, exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time, leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.


Subject(s)
COVID-19/complications , COVID-19/diagnosis , Convalescence , Adaptive Immunity/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Autoantibodies/blood , Biomarkers/metabolism , Blood Proteins/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Disease Progression , Female , Humans , Immunity, Innate/genetics , Longitudinal Studies , Male , Middle Aged , Risk Factors , SARS-CoV-2/isolation & purification , Transcriptome , Young Adult
2.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1442406

ABSTRACT

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/metabolism , Base Sequence , Humans , Immunity, Innate/immunology , Inflammation/immunology , Interferon-alpha/blood , Pulmonary Fibrosis/pathology , RNA-Seq , Severity of Illness Index , Transcriptome/genetics , United Kingdom , United States
3.
Nat Biotechnol ; 40(1): 110-120, 2022 01.
Article in English | MEDLINE | ID: covidwho-1397879

ABSTRACT

A better understanding of the metabolic alterations in immune cells during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may elucidate the wide diversity of clinical symptoms experienced by individuals with coronavirus disease 2019 (COVID-19). Here, we report the metabolic changes associated with the peripheral immune response of 198 individuals with COVID-19 through an integrated analysis of plasma metabolite and protein levels as well as single-cell multiomics analyses from serial blood draws collected during the first week after clinical diagnosis. We document the emergence of rare but metabolically dominant T cell subpopulations and find that increasing disease severity correlates with a bifurcation of monocytes into two metabolically distinct subsets. This integrated analysis reveals a robust interplay between plasma metabolites and cell-type-specific metabolic reprogramming networks that is associated with disease severity and could predict survival.


Subject(s)
COVID-19/blood , COVID-19/immunology , Monocytes/metabolism , Single-Cell Analysis , T-Lymphocytes/metabolism , COVID-19/diagnosis , COVID-19/metabolism , Humans , Prognosis
4.
Appl Microbiol Biotechnol ; 105(16-17): 6291-6299, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1368478

ABSTRACT

Improving the capacity of detecting positive severe acute respiratory syndrome coronavirus 2 is critical for identifying the infection of coronavirus disease 2019 (COVID-19) precisely and thereby curbing the pandemic. Cross-disciplinary approaches may improve the efficiency of COVID-19 diagnosis by compensating to some extent the limitations encountered by traditional test methods during the COVID-19 pandemic. Combining computed tomography (CT), serum-specific antibody detection, and nanopore sequencing with nucleic acid testing for individual testing may improve the accuracy of identifying COVID-19 patients. At community or even regional/national levels, the combination of pooled screening and spatial epidemiological strategies may enable the detection of early transmission of epidemics in a cost-effective way, which is also less affected by restricted access to diagnostic tests and kit supplies. This would significantly advance our capacity of curbing epidemics as soon as possible, and better prepare us for entering a new era of high-impact and high-frequency epidemics.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2
5.
Cell ; 183(6): 1479-1495.e20, 2020 12 10.
Article in English | MEDLINE | ID: covidwho-917236

ABSTRACT

We present an integrated analysis of the clinical measurements, immune cells, and plasma multi-omics of 139 COVID-19 patients representing all levels of disease severity, from serial blood draws collected during the first week of infection following diagnosis. We identify a major shift between mild and moderate disease, at which point elevated inflammatory signaling is accompanied by the loss of specific classes of metabolites and metabolic processes. Within this stressed plasma environment at moderate disease, multiple unusual immune cell phenotypes emerge and amplify with increasing disease severity. We condensed over 120,000 immune features into a single axis to capture how different immune cell classes coordinate in response to SARS-CoV-2. This immune-response axis independently aligns with the major plasma composition changes, with clinical metrics of blood clotting, and with the sharp transition between mild and moderate disease. This study suggests that moderate disease may provide the most effective setting for therapeutic intervention.


Subject(s)
COVID-19 , Genomics , RNA-Seq , SARS-CoV-2 , Single-Cell Analysis , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Severity of Illness Index
6.
Environ Int ; 143: 105964, 2020 10.
Article in English | MEDLINE | ID: covidwho-641724

ABSTRACT

To increase the capacity of identifying coronavirus disease 2019 (COVID-19) infection, many Biosafety Level 2 (BSL-2) labs have been established in a short period of time for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid tests all over the world. However, their biosafety has not been evaluated, which could have been the first gateway to SARS-CoV-2 transmission. During 9-11 March 2020, the first comprehensive evaluation of the biosafety in all 89 labs qualified for conducting SARS-CoV-2 tests in Sichuan Province of China was conducted. The degree of compliance with 39 criteria in five categories was evaluated: biosafety requirements for lab activities (14 criteria), sample transfer, acceptance and management (6 criteria), waste management (9 criteria), personnel training and protection (4 criteria), and lab environmental disinfection, emergency plans and accident handling (6 criteria). Our results revealed that, although an overall median compliance rate of 94.6% for 39 criteria, only four of 89 labs met all of them. Criteria in personnel training and protection have been most satisfactorily met, followed by lab environmental disinfection, emergency plans and accident handling. The most severe risk was the lack of automatic doors at the main entrance or in core operation areas, especially among labs in CDC and hospitals. This risk, together with failure for keeping pressure in the core operation areas 25 ± 5 Pa (mainly among labs in the third-party testing agencies), may cause accidental exposure to biological agents from lab activities. Other severe risk included failure for standard labeling of SARS-CoV-2 wastes and lacking regular monitoring of sterilization effects. Our findings would provide experiences and lessons for strengthening lab biosafety in other Chinese provinces, and also serve as an important reference for many other countries where such labs are being or will be quickly built for fighting the COVID-19. The information of lab safety should be considered to be internally linked to the national intelligent syndromic surveillance system (NISSS), for better improving the safety of the labs at the greatest need and facilitating more comprehensive surveillance of risk for disease outbreak.


Subject(s)
Betacoronavirus , COVID-19 , Coronavirus Infections , Pneumonia, Viral , China , Containment of Biohazards , Coronavirus Infections/epidemiology , Humans , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL