Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Sci Bull (Beijing) ; 67(13): 1372-1387, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1867754

ABSTRACT

Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, they are limited with respect to eliciting local immunity in the respiratory tract, which is the primary infection site for SARS-CoV-2. To overcome the limitations of intramuscular vaccines, we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2, named CA4-dNS1-nCoV-RBD (dNS1-RBD). A preclinical study showed that in hamsters challenged 1 d after single-dose vaccination or 9 months after booster vaccination, dNS1-RBD largely mitigated lung pathology, with no loss of body weight. Moreover, such cellular immunity is relatively unimpaired for the most concerning SARS-CoV-2 variants, especially for the latest Omicron variant. In addition, this vaccine also provides cross-protection against H1N1 and H5N1 influenza viruses. The protective immune mechanism of dNS1-RBD could be attributed to the innate immune response in the nasal epithelium, local RBD-specific T cell response in the lung, and RBD-specific IgA and IgG response. Thus, this study demonstrates that the intranasally delivered dNS1-RBD vaccine candidate may offer an important addition to the fight against the ongoing coronavirus disease 2019 pandemic and influenza infection, compensating limitations of current intramuscular vaccines.

2.
Cell Rep ; 39(8): 110862, 2022 May 24.
Article in English | MEDLINE | ID: covidwho-1821171

ABSTRACT

The rapidly spreading Omicron variant is highly resistant to vaccines, convalescent sera, and neutralizing antibodies (nAbs), highlighting the urgent need for potent therapeutic nAbs. Here, a panel of human nAbs from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescent patients show diverse neutralization against Omicron, of which XMA01 and XMA04 maintain nanomolar affinities and excellent neutralization (half maximal inhibitory concentration [IC50]: ∼20 ng/mL). nAb XMA09 shows weak but unattenuated neutralization against all variants of concern (VOCs) as well as SARS-CoV. Structural analysis reveals that the above three antibodies could synergistically bind to the receptor-binding domains (RBDs) of both wild-type and Omicron spikes and defines the critical determinants for nAb-mediated broad neutralizations. Three nAbs confer synergistic neutralization against Omicron, resulting from the inter-antibody interaction between XMA04 and XMA01(or XMA09). Furthermore, the XMA01/XMA04 cocktail provides synergistic protection against Beta and Omicron variant infections in hamsters. In summary, our results provide insights for the rational design of antibody cocktail therapeutics or universal vaccines against Omicron.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Cricetinae , Humans , Immunization, Passive , SARS-CoV-2
3.
Cell Rep ; 38(12): 110558, 2022 03 22.
Article in English | MEDLINE | ID: covidwho-1797096

ABSTRACT

Mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor-binding domain (RBD) may alter viral host tropism and affect the activities of neutralizing antibodies. Here, we investigated 153 RBD mutants and 11 globally circulating variants of concern (VOCs) and variants of interest (VOIs) (including Omicron) for their antigenic changes and cross-species tropism in cells expressing 18 ACE2 orthologs. Several RBD mutations strengthened viral infectivity in cells expressing ACE2 orthologs of non-human animals, particularly those less susceptible to the ancestral strain. The mutations surrounding amino acids (aas) 439-448 and aa 484 are more likely to cause neutralization resistance. Strikingly, enhanced cross-species infection potential in the mouse and ferret, instead of the neutralization-escape scores of the mutations, account for the positive correlation with the cumulative prevalence of mutations in humans. These findings present insights for potential drivers of circulating SARS-CoV-2 variants and provide informative parameters for tracking and forecasting spreading mutations.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Ferrets , Humans , Membrane Glycoproteins/metabolism , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Tropism , Viral Envelope Proteins
4.
Cell reports ; 2022.
Article in English | EuropePMC | ID: covidwho-1728589

ABSTRACT

Zhang et al. show in vitro cross-species infectivity and neutralization-escape characteristics of 153 SARS-CoV-2 RBD mutants and 11 globally circulating VOC/VOI variants. They reveal an association between enhanced cross-species infection potential and the current cumulative prevalence of mutations, which can inform surveillance and forecasting of SARS-CoV-2 spike mutations.

5.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329405

ABSTRACT

Antibody therapeutics for the treatment of COVID-19 has been highly successful while faces a challenge of the recent emergence of the Omicron variant which escapes the majority of existing SARS-CoV-2 neutralizing antibodies (nAbs). Here, we successfully generated a panel of SARS-CoV-2/SARS-CoV cross-neutralizing antibodies by sequential immunization of the two pseudoviruses. Of which, nAbs X01, X10 and X17 showed broadly neutralizing breadths against most variants of concern (VOCs) and X17 was further identified as a Class 5 nAb with undiminished neutralization against the Omicron variant. Cryo-EM structures of three-antibody in complex with the spike proteins of prototyped SARS-CoV-2, Delta, Omicron and SARS-CoV defined three non-overlapping conserved epitopes on the receptor-binding domain (RBD). The triple antibody cocktail exhibited enhanced resistance to viral escape and effective protection against the infection of Beta variant in hamsters. Our finding will aid the development of both antibody therapeutics and broad vaccines against SARS-CoV-2 and emerging variants.

6.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327136

ABSTRACT

The widespread SARS-CoV-2 in humans results in the continuous emergence of new variants. Recently emerged Omicron variant with multiple spike mutations sharply increases the risk of breakthrough infection or reinfection, highlighting the urgent need for new vaccines with broad-spectrum antigenic coverage. Using inter-lineage chimera and mutation patch strategies, we engineered a recombinant monomeric spike variant (STFK1628x), which showed high immunogenicity and mutually complementary antigenicity to its prototypic form (STFK). In hamsters, a bivalent vaccine comprised of STFK and STFK1628x elicited high titers of broad-spectrum antibodies to neutralize all 14 circulating SARS-CoV-2 variants, including Omicron;and fully protected vaccinees from intranasal SARS-CoV-2 challenges of either the ancestral strain or immune-evasive Beta variant. Strikingly, the vaccination of hamsters with the bivalent vaccine completely blocked the within-cage virus transmission to unvaccinated sentinels, for either the ancestral SARS-CoV-2 or Beta variant. Thus, our study provides new insights and antigen candidates for developing next-generation COVID-19 vaccines.

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-324812

ABSTRACT

Background: The pandemic of SARS-CoV-2 has turned into a global public health crisis. Acute SARS-CoV-2 infection is associated with severe pneumonia, multiple-organ failures and deaths. Currently, treatment for SARS-CoV-2 infection and severe pneumonia is largely lacking. Several clinical trials demonstrated that glucocorticoid dexamethasone is effective to reduce disease severity and mortality. However, whether dexamethasone is clinically sufficient to treat COVID-19 is unknown.Methods: We tested the therapeutic effect of dexamethasone on SARS-CoV-2 infection and pneumonia in a Syrian hamster model. Survival rate, body weight loss, viral RNA, antibody responses, severity of lung inflammation and injury were measured in a 7-day acute infection course.Findings: Dexamethasone reduces body weight loss and relieves the diffusion of lung injury in SARS-CoV-2-infected hamster by inhibiting the excessive proinflammatory cytokines including IL-4, IL-6, IL-10, IL-13, TNF-α and IFN-γ. Dexamethasone rescues hamsters from the lethal infection of SARS-CoV-2 variant D614G. Dexamethasone attenuates serum neutralizing antibody and RBD-specific antibody titers, and slightly increases viral RNA level in lung tissues.Interpretation: Overall, using the hamster model, this study improves our understanding of the therapeutic mechanisms and drawbacks of dexamethasone treatment of COVID-19, and suggests that an antiviral is needed to accompany the dexamethasone treatment regimen.Funding: National Science Key Research and Development Project of China, National Natural Science Foundation of China, the CAMS Innovation Fund for Medical Sciences and China Postdoctoral Science Foundation.Declaration of Interest: The authors declare no competing interests.Ethical Approval: All the animal experiments were approved by the Medical Ethics Committee(SUCM2021-112).

10.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292884

ABSTRACT

Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2);however, they are limited with respect to eliciting local immunity in the respiratory tract, which is the primary infection site for SARS-CoV-2. To overcome the limitations of intramuscular vaccines, we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2, named CA4-dNS1-nCoV-RBD (dNS1-RBD). A preclinical study showed that in hamsters challenged 1 day and 7 days after single-dose vaccination or 6 months after booster vaccination, dNS1-RBD largely mitigated lung pathology, with no loss of body weight, caused by either the prototype-like strain or beta variant of SARS-CoV-2. Lasted data showed that the animals could be well protected against beta variant challenge 9 months after vaccination. Notably, the weight loss and lung pathological changes of hamsters could still be significantly reduced when the hamster was vaccinated 24 h after challenge. Moreover, such cellular immunity is relatively unimpaired for the most concerning SARS-CoV-2 variants. The protective immune mechanism of dNS1-RBD could be attributed to the innate immune response in the nasal epithelium, local RBD-specific T cell response in the lung, and RBD-specific IgA and IgG response. Thus, this study demonstrates that the intranasally delivered dNS1-RBD vaccine candidate may offer an important addition to fight against the ongoing COVID-19 pandemic, compensating limitations of current intramuscular vaccines, particularly at the start of an outbreak.

12.
Emerg Microbes Infect ; 10(1): 1881-1889, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1398037

ABSTRACT

SARS-CoV-2 has been the causative pathogen of the pandemic of COVID-19, resulting in catastrophic health issues globally. It is important to develop human-like animal models for investigating the mechanisms that SARS-CoV-2 uses to infect humans and cause COVID-19. Several studies demonstrated that the non-human primate (NHP) is permissive for SARS-CoV-2 infection to cause typical clinical symptoms including fever, cough, breathing difficulty, and other diagnostic abnormalities such as immunopathogenesis and hyperplastic lesions in the lung. These NHP models have been used for investigating the potential infection route and host immune response to SARS-CoV-2, as well as testing vaccines and drugs. This review aims to summarize the benefits and caveats of NHP models currently available for SARS-CoV-2, and to discuss key topics including model optimization, extended application, and clinical translation.


Subject(s)
COVID-19/virology , Disease Models, Animal , Primates/virology , SARS-CoV-2/physiology , Animals , Antiviral Agents/administration & dosage , COVID-19/drug therapy , COVID-19/immunology , COVID-19/pathology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Humans , Primates/immunology , SARS-CoV-2/genetics
14.
Sci Transl Med ; 13(606)2021 08 11.
Article in English | MEDLINE | ID: covidwho-1319371

ABSTRACT

Multiple safe and effective vaccines that elicit immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary to respond to the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here, we developed a protein subunit vaccine composed of spike ectodomain protein (StriFK) plus a nitrogen bisphosphonate-modified zinc-aluminum hybrid adjuvant (FH002C). StriFK-FH002C generated substantially higher neutralizing antibody titers in mice, hamsters, and cynomolgus monkeys than those observed in plasma isolated from COVID-19 convalescent individuals. StriFK-FH002C also induced both TH1- and TH2-polarized helper T cell responses in mice. In hamsters, StriFK-FH002C immunization protected animals against SARS-CoV-2 challenge, as shown by the absence of virus-induced weight loss, fewer symptoms of disease, and reduced lung pathology. Vaccination of hamsters with StriFK-FH002C also reduced within-cage virus transmission to unvaccinated, cohoused hamsters. In summary, StriFK-FH002C represents an effective, protein subunit-based SARS-CoV-2 vaccine candidate.


Subject(s)
COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Cricetinae , Humans , Mice , Protein Subunits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
15.
Theranostics ; 11(13): 6607-6615, 2021.
Article in English | MEDLINE | ID: covidwho-1231569

ABSTRACT

SARS-CoV-2 infection, which is responsible for the current COVID-19 pandemic, can cause life-threatening pneumonia, respiratory failure and even death. Characterizing SARS-CoV-2 pathogenesis in primary human target cells and tissues is crucial for developing vaccines and therapeutics. However, given the limited access to clinical samples from COVID-19 patients, there is a pressing need for in vitro/in vivo models to investigate authentic SARS-CoV-2 infection in primary human lung cells or tissues with mature structures. The present study was designed to evaluate a humanized mouse model carrying human lung xenografts for SARS-CoV-2 infection in vivo. Methods: Human fetal lung tissue surgically grafted under the dorsal skin of SCID mice were assessed for growth and development after 8 weeks. Following SARS-CoV-2 inoculation into the differentiated lung xenografts, viral replication, cell-type tropism and histopathology of SARS-CoV-2 infection, and local cytokine/chemokine expression were determined over a 6-day period. The effect of IFN-α treatment against SARS-CoV-2 infection was tested in the lung xenografts. Results: Human lung xenografts expanded and developed mature structures closely resembling normal human lung. SARS-CoV-2 replicated and spread efficiently in the lung xenografts with the epithelial cells as the main target, caused severe lung damage, and induced a robust pro-inflammatory response. IFN-α treatment effectively inhibited SARS-CoV-2 replication in the lung xenografts. Conclusions: These data support the human lung xenograft mouse model as a useful and biological relevant tool that should facilitate studies on the pathogenesis of SARS-CoV-2 lung infection and the evaluation of potential antiviral therapies.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Lung/pathology , Respiratory Mucosa/cytology , SARS-CoV-2/immunology , Aborted Fetus , Animals , COVID-19/pathology , COVID-19/virology , Cells, Cultured , Epithelial Cells/virology , Heterografts , Humans , Lung/immunology , Lung/virology , Lung Transplantation , Male , Mice , Mice, SCID , Primary Cell Culture , SARS-CoV-2/pathogenicity , Virus Replication
16.
Signal Transduct Target Ther ; 6(1): 136, 2021 03 31.
Article in English | MEDLINE | ID: covidwho-1164823

ABSTRACT

Epidemiological studies of the COVID-19 patients have suggested the male bias in outcomes of lung illness. To experimentally demonstrate the epidemiological results, we performed animal studies to infect male and female Syrian hamsters with SARS-CoV-2. Remarkably, high viral titer in nasal washings was detectable in male hamsters who presented symptoms of weight loss, weakness, piloerection, hunched back and abdominal respiration, as well as severe pneumonia, pulmonary edema, consolidation, and fibrosis. In contrast with the males, the female hamsters showed much lower shedding viral titers, moderate symptoms, and relatively mild lung pathogenesis. The obvious differences in the susceptibility to SARS-CoV-2 and severity of lung pathogenesis between male and female hamsters provided experimental evidence that SARS-CoV-2 infection and the severity of COVID-19 are associated with gender.


Subject(s)
COVID-19 , SARS-CoV-2/metabolism , Sex Characteristics , Animals , COVID-19/metabolism , COVID-19/pathology , Disease Models, Animal , Disease Susceptibility , Female , Male , Mesocricetus
17.
Small Methods ; 5(2): 2001031, 2021 Feb 15.
Article in English | MEDLINE | ID: covidwho-986422

ABSTRACT

The ongoing corona virus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2 infection, has resulted in hundreds of thousands of deaths. Cellular entry of SARS-CoV-2, which is mediated by the viral spike protein and ACE2 receptor, is an essential target for the development of vaccines, therapeutic antibodies, and drugs. Using a mammalian cell expression system, a genetically engineered sensor of fluorescent protein (Gamillus)-fused SARS-CoV-2 spike trimer (STG) to probe the viral entry process is developed. In ACE2-expressing cells, it is found that the STG probe has excellent performance in the live-cell visualization of receptor binding, cellular uptake, and intracellular trafficking of SARS-CoV-2 under virus-free conditions. The new system allows quantitative analyses of the inhibition potentials and detailed influence of COVID-19-convalescent human plasmas, neutralizing antibodies and compounds, providing a versatile tool for high-throughput screening and phenotypic characterization of SARS-CoV-2 entry inhibitors. This approach may also be adapted to develop a viral entry visualization system for other viruses.

18.
Emerg Microbes Infect ; 9(1): 949-961, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-786997

ABSTRACT

The emergences of coronaviruses have caused a serious global public health problem because their infection in humans caused the severe acute respiratory disease and deaths. The outbreaks of lethal coronaviruses have taken place for three times within recent two decades (SARS-CoV in 2002, MERS-CoV in 2012 and SARS-CoV-2 in 2019). Much more serious than SARS-CoV in 2002, the current SARS-CoV-2 infection has been spreading to more than 213 countries, areas or territories and causing more than two million cases up to date (17 April 2020). Unfortunately, no vaccine and specific anti-coronavirus drugs are available at present time. Current clinical treatment at hand is inadequate to suppress viral replication and inflammation, and reverse organ failure. Intensive research efforts have focused on increasing our understanding of viral biology of SARS-CoV-2, improving antiviral therapy and vaccination strategies. The animal models are important for both the fundamental research and drug discovery of coronavirus. This review aims to summarize the animal models currently available for SARS-CoV and MERS-CoV, and their potential use for the study of SARS-CoV-2. We will discuss the benefits and caveats of these animal models and present critical findings that might guide the fundamental studies and urgent treatment of SARS-CoV-2-caused diseases.


Subject(s)
Betacoronavirus/physiology , Coronaviridae Infections/pathology , Coronaviridae Infections/prevention & control , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Disease Models, Animal , Pandemics/prevention & control , Pneumonia, Viral/pathology , Pneumonia, Viral/prevention & control , Research/trends , Animals , COVID-19 , Humans , Middle East Respiratory Syndrome Coronavirus/physiology , SARS Virus/physiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL