Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Preprint in English | EuropePMC | ID: ppcovidwho-292884

ABSTRACT

Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2);however, they are limited with respect to eliciting local immunity in the respiratory tract, which is the primary infection site for SARS-CoV-2. To overcome the limitations of intramuscular vaccines, we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2, named CA4-dNS1-nCoV-RBD (dNS1-RBD). A preclinical study showed that in hamsters challenged 1 day and 7 days after single-dose vaccination or 6 months after booster vaccination, dNS1-RBD largely mitigated lung pathology, with no loss of body weight, caused by either the prototype-like strain or beta variant of SARS-CoV-2. Lasted data showed that the animals could be well protected against beta variant challenge 9 months after vaccination. Notably, the weight loss and lung pathological changes of hamsters could still be significantly reduced when the hamster was vaccinated 24 h after challenge. Moreover, such cellular immunity is relatively unimpaired for the most concerning SARS-CoV-2 variants. The protective immune mechanism of dNS1-RBD could be attributed to the innate immune response in the nasal epithelium, local RBD-specific T cell response in the lung, and RBD-specific IgA and IgG response. Thus, this study demonstrates that the intranasally delivered dNS1-RBD vaccine candidate may offer an important addition to fight against the ongoing COVID-19 pandemic, compensating limitations of current intramuscular vaccines, particularly at the start of an outbreak.

2.
Nat Commun ; 12(1): 5652, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440473

ABSTRACT

The emergence of numerous variants of SARS-CoV-2, the causative agent of COVID-19, has presented new challenges to the global efforts to control the COVID-19 pandemic. Here, we obtain two cross-neutralizing antibodies (7D6 and 6D6) that target Sarbecoviruses' receptor-binding domain (RBD) with sub-picomolar affinities and potently neutralize authentic SARS-CoV-2. Crystal structures show that both antibodies bind a cryptic site different from that recognized by existing antibodies and highly conserved across Sarbecovirus isolates. Binding of these two antibodies to the RBD clashes with the adjacent N-terminal domain and disrupts the viral spike. Both antibodies confer good resistance to mutations in the currently circulating SARS-CoV-2 variants. Thus, our results have direct relevance to public health as options for passive antibody therapeutics and even active prophylactics. They can also inform the design of pan-sarbecovirus vaccines.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/therapy , Immunization, Passive/methods , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Antibodies, Viral/administration & dosage , Antibodies, Viral/isolation & purification , Antibodies, Viral/metabolism , Binding Sites/genetics , Binding Sites/immunology , Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/isolation & purification , Broadly Neutralizing Antibodies/metabolism , CHO Cells , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cricetulus , Epitopes/immunology , HEK293 Cells , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Pandemics/prevention & control , Protein Multimerization , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
4.
Pattern Recognit ; 122: 108341, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1415697

ABSTRACT

Segmentation of infections from CT scans is important for accurate diagnosis and follow-up in tackling the COVID-19. Although the convolutional neural network has great potential to automate the segmentation task, most existing deep learning-based infection segmentation methods require fully annotated ground-truth labels for training, which is time-consuming and labor-intensive. This paper proposed a novel weakly supervised segmentation method for COVID-19 infections in CT slices, which only requires scribble supervision and is enhanced with the uncertainty-aware self-ensembling and transformation-consistent techniques. Specifically, to deal with the difficulty caused by the shortage of supervision, an uncertainty-aware mean teacher is incorporated into the scribble-based segmentation method, encouraging the segmentation predictions to be consistent under different perturbations for an input image. This mean teacher model can guide the student model to be trained using information in images without requiring manual annotations. On the other hand, considering the output of the mean teacher contains both correct and unreliable predictions, equally treating each prediction in the teacher model may degrade the performance of the student network. To alleviate this problem, the pixel level uncertainty measure on the predictions of the teacher model is calculated, and then the student model is only guided by reliable predictions from the teacher model. To further regularize the network, a transformation-consistent strategy is also incorporated, which requires the prediction to follow the same transformation if a transform is performed on an input image of the network. The proposed method has been evaluated on two public datasets and one local dataset. The experimental results demonstrate that the proposed method is more effective than other weakly supervised methods and achieves similar performance as those fully supervised.

6.
Sci Transl Med ; 13(606)2021 08 11.
Article in English | MEDLINE | ID: covidwho-1319371

ABSTRACT

Multiple safe and effective vaccines that elicit immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary to respond to the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here, we developed a protein subunit vaccine composed of spike ectodomain protein (StriFK) plus a nitrogen bisphosphonate-modified zinc-aluminum hybrid adjuvant (FH002C). StriFK-FH002C generated substantially higher neutralizing antibody titers in mice, hamsters, and cynomolgus monkeys than those observed in plasma isolated from COVID-19 convalescent individuals. StriFK-FH002C also induced both TH1- and TH2-polarized helper T cell responses in mice. In hamsters, StriFK-FH002C immunization protected animals against SARS-CoV-2 challenge, as shown by the absence of virus-induced weight loss, fewer symptoms of disease, and reduced lung pathology. Vaccination of hamsters with StriFK-FH002C also reduced within-cage virus transmission to unvaccinated, cohoused hamsters. In summary, StriFK-FH002C represents an effective, protein subunit-based SARS-CoV-2 vaccine candidate.


Subject(s)
COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Cricetinae , Humans , Mice , Protein Subunits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
7.
Transport Policy ; 2021.
Article in English | ScienceDirect | ID: covidwho-1313471

ABSTRACT

The COVID-19 has created significant impacts on the economy and individual life around the world. Various countries and cities have adopted corresponding control measures to reduce transport activities and maintain social distance to combat the spread of COVID-19. In the circumstances, residents only maintained essential travel to ensure a normal and fundamental life. In order to explore the impacts of the epidemic and control measures on individually essential travel, we have collected 513 questionnaires between February and March 2020 in China to investigate the various characteristics of essential travel. Using a multivariate logistic regression model, we examine the major factors that potentially impact the mode choices of essential travel. Results show that various socioeconomic, transport supply, health concern and travel purpose have significantly influenced travel mode choices of essential travel. The concept of essential travel will, in the era of port-pandemic, have profound implications on transportation policy making, especially on how to improve the fundamental welfare of the disadvantaged population.

8.
J Leukoc Biol ; 110(3): 591-604, 2021 09.
Article in English | MEDLINE | ID: covidwho-1298500

ABSTRACT

As the most successful therapy for missing teeth, dental implant has become increasingly prevalent around the world. A lot of papers have reported diverse local risk factors affecting the success and survival rate of dental implants, either for a short or a long period. However, there are also many types of systemic disorders or relatively administrated medicine that may jeopardize the security and success of dental implant treatment. Additionally, the coronavirus disease 2019 pandemic also poses a challenge to dental implant clinicians. Some of these risk factors are clinically common but to some extent unfamiliar to dentists, thus optimal measurements are often lacking when they occur in dental clinics. In this review, we analyze potential systemic risk factors that may affect the success rate of dental implants. Some of them may affect bone mineral density or enhance the likelihood of local infection, thus impeding osseointegration. Others may even systemically increase the risk of the surgery and threaten patients' life. In order to help novices receive high-risk patients who need to get dental implant treatment in a more reasonable way, we accordingly review recent research results and clinical experiments to discuss promising precautions, such as stopping drugs that impact bone mineral density or the operation, and addressing any perturbations on vital signs.


Subject(s)
Bone Density , Dental Implants/standards , Dental Restoration Failure/statistics & numerical data , Osseointegration , Humans , Risk Factors
9.
Theranostics ; 11(13): 6607-6615, 2021.
Article in English | MEDLINE | ID: covidwho-1231569

ABSTRACT

SARS-CoV-2 infection, which is responsible for the current COVID-19 pandemic, can cause life-threatening pneumonia, respiratory failure and even death. Characterizing SARS-CoV-2 pathogenesis in primary human target cells and tissues is crucial for developing vaccines and therapeutics. However, given the limited access to clinical samples from COVID-19 patients, there is a pressing need for in vitro/in vivo models to investigate authentic SARS-CoV-2 infection in primary human lung cells or tissues with mature structures. The present study was designed to evaluate a humanized mouse model carrying human lung xenografts for SARS-CoV-2 infection in vivo. Methods: Human fetal lung tissue surgically grafted under the dorsal skin of SCID mice were assessed for growth and development after 8 weeks. Following SARS-CoV-2 inoculation into the differentiated lung xenografts, viral replication, cell-type tropism and histopathology of SARS-CoV-2 infection, and local cytokine/chemokine expression were determined over a 6-day period. The effect of IFN-α treatment against SARS-CoV-2 infection was tested in the lung xenografts. Results: Human lung xenografts expanded and developed mature structures closely resembling normal human lung. SARS-CoV-2 replicated and spread efficiently in the lung xenografts with the epithelial cells as the main target, caused severe lung damage, and induced a robust pro-inflammatory response. IFN-α treatment effectively inhibited SARS-CoV-2 replication in the lung xenografts. Conclusions: These data support the human lung xenograft mouse model as a useful and biological relevant tool that should facilitate studies on the pathogenesis of SARS-CoV-2 lung infection and the evaluation of potential antiviral therapies.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Lung/pathology , Respiratory Mucosa/cytology , SARS-CoV-2/immunology , Aborted Fetus , Animals , COVID-19/pathology , COVID-19/virology , Cells, Cultured , Epithelial Cells/virology , Heterografts , Humans , Lung/immunology , Lung/virology , Lung Transplantation , Male , Mice , Mice, SCID , Primary Cell Culture , SARS-CoV-2/pathogenicity , Virus Replication
10.
Signal Transduct Target Ther ; 6(1): 136, 2021 03 31.
Article in English | MEDLINE | ID: covidwho-1164823

ABSTRACT

Epidemiological studies of the COVID-19 patients have suggested the male bias in outcomes of lung illness. To experimentally demonstrate the epidemiological results, we performed animal studies to infect male and female Syrian hamsters with SARS-CoV-2. Remarkably, high viral titer in nasal washings was detectable in male hamsters who presented symptoms of weight loss, weakness, piloerection, hunched back and abdominal respiration, as well as severe pneumonia, pulmonary edema, consolidation, and fibrosis. In contrast with the males, the female hamsters showed much lower shedding viral titers, moderate symptoms, and relatively mild lung pathogenesis. The obvious differences in the susceptibility to SARS-CoV-2 and severity of lung pathogenesis between male and female hamsters provided experimental evidence that SARS-CoV-2 infection and the severity of COVID-19 are associated with gender.


Subject(s)
COVID-19 , SARS-CoV-2/metabolism , Sex Characteristics , Animals , COVID-19/metabolism , COVID-19/pathology , Disease Models, Animal , Disease Susceptibility , Female , Male , Mesocricetus
11.
Clin Infect Dis ; 71(16): 2027-2034, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-1153138

ABSTRACT

BACKGROUND: The novel coronavirus SARS-CoV-2 is a newly emerging virus. The antibody response in infected patients remains largely unknown, and the clinical value of antibody testing has not been fully demonstrated. METHODS: 173 patients with SARS-CoV-2 infection were enrolled. Their serial plasma samples (n = 535) collected during hospitalization were tested for total antibodies (Ab), IgM, and IgG against SARS-CoV-2. The dynamics of antibodies with disease progress were analyzed. RESULTS: Among 173 patients, the seroconversion rates for Ab, IgM, and IgG were 93.1%, 82.7%, and 64.7%, respectively. The reason for the negative antibody findings in 12 patients might be due to the lack of blood samples at the later stage of illness. The median seroconversion times for Ab, IgM, and then IgG were days 11, 12, and 4, respectively. The presence of antibodies was <40% among patients within 1 week of onset, and rapidly increased to 100.0% (Ab), 94.3% (IgM), and 79.8% (IgG) by day 15 after onset. In contrast, RNA detectability decreased from 66.7% (58/87) in samples collected before day 7 to 45.5% (25/55) during days 15-39. Combining RNA and antibody detection significantly improved the sensitivity of pathogenic diagnosis for COVID-19 (P < .001), even in the early phase of 1 week from onset (P = .007). Moreover, a higher titer of Ab was independently associated with a worse clinical classification (P = .006). CONCLUSIONS: Antibody detection offers vital clinical information during the course of SARS-CoV-2 infection. The findings provide strong empirical support for the routine application of serological testing in the diagnosis and management of COVID-19 patients.


Subject(s)
COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Adult , Aged , Antibodies, Viral/metabolism , Antibody Formation/physiology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Male , Middle Aged , Pandemics , Serologic Tests
12.
Nat Commun ; 12(1): 1383, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1114711

ABSTRACT

In this study, we investigate the seroprevalence of SARS-CoV-2 antibodies among blood donors in the cities of Wuhan, Shenzhen, and Shijiazhuang in China. From January to April 2020, 38,144 healthy blood donors in the three cities were tested for total antibody against SARS-CoV-2 followed by pseudotype SARS-CoV-2 neutralization tests, IgG, and IgM antibody testing. Finally, a total of 398 donors were confirmed positive. The age- and sex-standardized SARS-CoV-2 seroprevalence among 18-60 year-old adults (18-65 year-old in Shenzhen) was 2.66% (95% CI: 2.24%-3.07%) in Wuhan, 0.033% (95% CI: 0.0029%-0.267%) in Shenzhen, and 0.0028% (95% CI: 0.0001%-0.158%) in Shijiazhuang, respectively. Female sex and older-age were identified to be independent risk factors for SARS-CoV-2 seropositivity among blood donors in Wuhan. As most of the population of China remained uninfected during the early wave of the COVID-19 pandemic, effective public health measures are still certainly required to block viral spread before a vaccine is widely available.


Subject(s)
SARS-CoV-2/pathogenicity , Antibodies, Viral/blood , Blood Donors/statistics & numerical data , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , China/epidemiology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Neutralization Tests , Prevalence , Risk Factors , SARS-CoV-2/immunology
13.
Front Pharmacol ; 11: 609592, 2020.
Article in English | MEDLINE | ID: covidwho-1094200

ABSTRACT

To identify drugs that are potentially used for the treatment of COVID-19, the potency of 1403 FDA-approved drugs were evaluated using a robust pseudovirus assay and the candidates were further confirmed by authentic SARS-CoV-2 assay. Four compounds, Clomiphene (citrate), Vortioxetine, Vortioxetine (hydrobromide) and Asenapine (hydrochloride), showed potent inhibitory effects in both pseudovirus and authentic virus assay. The combination of Clomiphene (citrate), Vortioxetine and Asenapine (hydrochloride) is much more potent than used alone, with IC50 of 0.34 µM.

14.
Small Methods ; 5(2): 2001031, 2021 Feb 15.
Article in English | MEDLINE | ID: covidwho-986422

ABSTRACT

The ongoing corona virus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2 infection, has resulted in hundreds of thousands of deaths. Cellular entry of SARS-CoV-2, which is mediated by the viral spike protein and ACE2 receptor, is an essential target for the development of vaccines, therapeutic antibodies, and drugs. Using a mammalian cell expression system, a genetically engineered sensor of fluorescent protein (Gamillus)-fused SARS-CoV-2 spike trimer (STG) to probe the viral entry process is developed. In ACE2-expressing cells, it is found that the STG probe has excellent performance in the live-cell visualization of receptor binding, cellular uptake, and intracellular trafficking of SARS-CoV-2 under virus-free conditions. The new system allows quantitative analyses of the inhibition potentials and detailed influence of COVID-19-convalescent human plasmas, neutralizing antibodies and compounds, providing a versatile tool for high-throughput screening and phenotypic characterization of SARS-CoV-2 entry inhibitors. This approach may also be adapted to develop a viral entry visualization system for other viruses.

15.
Natl Sci Rev ; 8(3): nwaa291, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-977391

ABSTRACT

Minks are raised in many countries and have transmitted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans. However, the biologic properties of SARS-CoV-2 in minks are largely unknown. Here, we investigated and found that SARS-CoV-2 replicates efficiently in both the upper and lower respiratory tracts, and transmits efficiently in minks via respiratory droplets; pulmonary lesions caused by SARS-CoV-2 in minks are similar to those seen in humans with COVID-19. We further found that a spike protein-based subunit vaccine largely prevented SARS-CoV-2 replication and lung damage caused by SARS-CoV-2 infection in minks. Our study indicates that minks are a useful animal model for evaluating the efficacy of drugs or vaccines against COVID-19 and that vaccination is a potential strategy to prevent minks from transmitting SARS-CoV-2.

16.
Emerg Microbes Infect ; 9(1): 2076-2090, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-913103

ABSTRACT

The current coronavirus disease 2019 (COVID-19) pandemic was the result of the rapid transmission of a highly pathogenic coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which there is no efficacious vaccine or therapeutic. Toward the development of a vaccine, here we expressed and evaluated as potential candidates four versions of the spike (S) protein using an insect cell expression system: receptor binding domain (RBD), S1 subunit, the wild-type S ectodomain (S-WT), and the prefusion trimer-stabilized form (S-2P). We showed that RBD appears as a monomer in solution, whereas S1, S-WT, and S-2P associate as homotrimers with substantial glycosylation. Cryo-electron microscopy analyses suggested that S-2P assumes an identical trimer conformation as the similarly engineered S protein expressed in 293 mammalian cells but with reduced glycosylation. Overall, the four proteins confer excellent antigenicity with convalescent COVID-19 patient sera in enzyme-linked immunosorbent assay (ELISA), yet show distinct reactivities in immunoblotting. RBD, S-WT and S-2P, but not S1, induce high neutralization titres (>3-log) in mice after a three-round immunization regimen. The high immunogenicity of S-2P could be maintained at the lowest dose (1 µg) with the inclusion of an aluminium adjuvant. Higher doses (20 µg) of S-2P can elicit high neutralization titres in non-human primates that exceed 40-times the mean titres measured in convalescent COVID-19 subjects. Our results suggest that the prefusion trimer-stabilized SARS-CoV-2 S-protein from insect cells may offer a potential candidate strategy for the development of a recombinant COVID-19 vaccine.


Subject(s)
Antigens, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Immunogenicity, Vaccine/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 , COVID-19 Vaccines , Cell Line , Coronavirus Infections/immunology , Cryoelectron Microscopy , Enzyme-Linked Immunosorbent Assay , Humans , Macaca fascicularis , Mice , Mice, Inbred BALB C , Neutralization Tests , Peptidyl-Dipeptidase A/metabolism , Protein Domains/genetics , Protein Domains/immunology , SARS-CoV-2 , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Vaccination , Viral Envelope Proteins/immunology
17.
Emerg Microbes Infect ; 9(1): 2105-2113, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-913100

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19) is a disaster for human society. A convenient and reliable neutralization assay is very important for the development of vaccines and novel drugs. In this study, a G protein-deficient vesicular stomatitis virus (VSVdG) bearing a truncated spike protein (S with C-terminal 18 amino acid truncation) was compared to that bearing the full-length spike protein of SARS-CoV-2 and showed much higher efficiency. A neutralization assay was established based on VSV-SARS-CoV-2-Sdel18 pseudovirus and hACE2-overexpressing BHK21 cells (BHK21-hACE2 cells). The experimental results can be obtained by automatically counting the number of EGFP-positive cells at 12 h after infection, making the assay convenient and high-throughput. The serum neutralizing titer measured by the VSV-SARS-CoV-2-Sdel18 pseudovirus assay has a good correlation with that measured by the wild type SARS-CoV-2 assay. Seven neutralizing monoclonal antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 S protein were obtained. This efficient and reliable pseudovirus assay model could facilitate the development of new drugs and vaccines.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Neutralization Tests/methods , Pneumonia, Viral/diagnosis , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Cell Line , Chlorocebus aethiops , Cricetinae , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/immunology
18.
Eur Respir J ; 56(2)2020 08.
Article in English | MEDLINE | ID: covidwho-744959

ABSTRACT

BACKGROUND: Timely diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a prerequisite for treatment and prevention. The serology characteristics and complement diagnosis value of the antibody test to RNA test need to be demonstrated. METHOD: Serial sera of 80 patients with PCR-confirmed coronavirus disease 2019 (COVID-19) were collected at the First Affiliated Hospital of Zhejiang University, Hangzhou, China. Total antibody (Ab), IgM and IgG antibodies against SARS-CoV-2 were detected, and the antibody dynamics during the infection were described. RESULTS: The seroconversion rates for Ab, IgM and IgG were 98.8%, 93.8% and 93.8%, respectively. The first detectible serology marker was Ab, followed by IgM and IgG, with a median seroconversion time of 15, 18 and 20 days post exposure (d.p.e.) or 9, 10 and 12 days post onset (d.p.o.), respectively. The antibody levels increased rapidly beginning at 6 d.p.o. and were accompanied by a decline in viral load. For patients in the early stage of illness (0-7 d.p.o), Ab showed the highest sensitivity (64.1%) compared with IgM and IgG (33.3% for both; p<0.001). The sensitivities of Ab, IgM and IgG increased to 100%, 96.7% and 93.3%, respectively, 2 weeks later. When the same antibody type was detected, no significant difference was observed between enzyme-linked immunosorbent assays and other forms of immunoassays. CONCLUSIONS: A typical acute antibody response is induced during SARS-CoV-2 infection. Serology testing provides an important complement to RNA testing in the later stages of illness for pathogenic-specific diagnosis and helpful information to evaluate the adapted immunity status of patients.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Adult , Aged , COVID-19 , COVID-19 Testing , China , Coronavirus Infections/complications , Female , Hospitalization , Humans , Infectious Disease Incubation Period , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , SARS-CoV-2 , Sensitivity and Specificity , Seroconversion , Symptom Assessment , Time Factors , Viral Load
19.
Int J Oral Sci ; 12(1): 11, 2020 04 17.
Article in English | MEDLINE | ID: covidwho-72506

ABSTRACT

2019-nCoV epidemic was firstly reported at late December of 2019 and has caused a global outbreak of COVID-19 now. Saliva, a biofluid largely generated from salivary glands in oral cavity, has been reported 2019-nCoV nucleic acid positive. Besides lungs, salivary glands and tongue are possibly another hosts of 2019-nCoV due to expression of ACE2. Close contact or short-range transmission of infectious saliva droplets is a primary mode for 2019-nCoV to disseminate as claimed by WHO, while long-distance saliva aerosol transmission is highly environment dependent within indoor space with aerosol-generating procedures such as dental practice. So far, no direct evidence has been found that 2019-nCoV is vital in air flow for long time. Therefore, to prevent formation of infectious saliva droplets, to thoroughly disinfect indoor air and to block acquisition of saliva droplets could slow down 2019-nCoV dissemination. This review summarizes diagnostic value of saliva for 2019-nCoV, possibly direct invasion into oral tissues, and close contact transmission of 2019-nCoV by saliva droplets, expecting to contribute to 2019-nCoV epidemic control.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Saliva/virology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/isolation & purification , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Humans , Mouth/virology , Peptidyl-Dipeptidase A/metabolism , Pharynx/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , SARS Virus/isolation & purification , SARS Virus/pathogenicity , SARS-CoV-2
20.
Eur Urol ; 77(6): 742-747, 2020 06.
Article in English | MEDLINE | ID: covidwho-27850

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a novel and lethal infectious disease, posing a threat to global health security. The number of cases has increased rapidly, but no data concerning kidney transplant (KTx) recipients infected with COVID-19 are available. To present the epidemiological, clinical, and therapeutic characteristics of KTx recipients infected with COVID-19, we report on a case series of five patients who were confirmed as having COVID-19 through nucleic acid testing (NAT) from January 1, 2020 to February 28, 2020. The most common symptoms on admission to hospital were fever (five patients, 100%), cough (five patients, 100%), myalgia or fatigue (three patients, 60%), and sputum production (three patients, 60%); serum creatinine or urea nitrogen levels were slightly higher than those before symptom onset. Four patients received a reduced dose of maintenance immunosuppressive therapy during hospitalization. As of March 4, 2020 NAT was negative for COVID-19 in three patients twice in succession, and their computed tomography scans showed improved images. Although greater patient numbers and long-term follow-up data are needed, our series demonstrates that mild COVID-19 infection in KTx recipients can be managed using symptomatic support therapy combined with adjusted maintenance immunosuppressive therapy.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Immunosuppressive Agents/adverse effects , Kidney Transplantation/adverse effects , Opportunistic Infections/diagnosis , Pneumonia, Viral/diagnosis , Transplant Recipients , Adult , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , China , Coronavirus Infections/therapy , Coronavirus Infections/virology , Female , Humans , Immunocompromised Host , Immunosuppressive Agents/administration & dosage , Male , Middle Aged , Opportunistic Infections/therapy , Opportunistic Infections/virology , Pandemics , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Predictive Value of Tests , SARS-CoV-2 , Severity of Illness Index , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...