Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Year range
1.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-316032

ABSTRACT

Despite widespread interest in the pathophysiology of COVID-19 in respiratory and cardiovascular systems, little is known about the morphologic and molecular changes in the testis of patients with COVID-19 and the effects of SARS-CoV-2 infection on male fertility. We report here on the pathophysiology and molecular feature of testes obtained at autopsy from six men with COVID-19, as compared with those of testes from three men with age-matched, uninfected SARS-CoV-2. Our histopathological results showed that all COVID-19 patients had severe spermatogenesis damages compared with controls. Importantly, we detected the nuclear acid of the SARS-CoV-2 virus, viral particles, and SARS-CoV-2 spike S1 protein in COVID-19 patient testes, and we also found ACE2 and TMPRSS2 significantly elevated in the testes from COVID-19 patients. Furthermore, we observed a prominent leukocyte infiltration, including CD3+ T lymphocytes, CD20+ B lymphocytes, CD68+ macrophages, HLA-DR+ myeloid cells, and CD38+ plasma cells in the testes of COVID-19 patients. RNA-Seq analyses further revealed SARS-CoV-2 infection could lead to dysfunction of the genes that regulate the spermatogenesis and inflammation response-related pathways. Collectively, our pathological and molecular examination findings indicate that SARS-CoV-2 could directly attack testicular cells, thereby inducing the damage of testicular immune privilege and spermatogenesis defects.

2.
Front Immunol ; 12: 631044, 2021.
Article in English | MEDLINE | ID: covidwho-1094169

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has been raging around the world since January 2020. Pregnancy places the women in a unique immune scenario which may allow severe COVID-19 disease. In this regard, the potential unknown effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on mothers and fetuses have attracted considerable attention. There is no clear consistent evidence of the changes in the immune status of pregnant women after recovery from COVID-19. In this study, we use multiparameter flow cytometry and Luminex assay to determine the immune cell subsets and cytokines, respectively, in the peripheral blood and umbilical cord blood from pregnant women recovering from COVID-19 about 3 months (n=5). Our results showed decreased percentages of Tc2, Tfh17, memory B cells, virus-specific NK cells, and increased percentages of naive B cells in the peripheral blood. Serum levels of IL-1ra and MCP-1 showed a decreased tendency in late recovery stage (LRS) patients. Meanwhile, there was no significant difference in immune cell subsets in the umbilical cord blood. The placentas from LRS patients showed increased CD68+ macrophages infiltration and mild hypoxic features. The inflammatory damage of the placenta may be related to the antiviral response. Since the receptors, ACE2 and TMPRSS2, utilized by SARS-CoV-2 are not co-expressed in the placenta, so it is extremely rare for SARS-CoV-2 to cause infection through this route and the impact on the fetus is negligible.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Fetal Blood/immunology , Germinal Center/immunology , Placenta/immunology , SARS-CoV-2/physiology , Th17 Cells/immunology , Angiotensin-Converting Enzyme 2/metabolism , Autoantigens/metabolism , Female , Flow Cytometry , Humans , Immunologic Memory , Immunophenotyping , Killer Cells, Natural , Pregnancy , Receptors, Interleukin-1/metabolism , Serine Endopeptidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL