Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-315723

ABSTRACT

The pandemic of COVID-19 caused by SARS-CoV-2 has posed serious threats to global health and economy, thus calling for the development of safe and effective vaccines. The receptor-binding domain (RBD) in the spike protein of SARS-CoV-2 is responsible for its binding to ACE2 receptor. It contains multiple dominant neutralizing epitopes and serves as an important antigen for the development of COVID-19 vaccines. Here, we showed that immunization of mice with a candidate subunit vaccine consisting of SARS-CoV-2 RBD and Fc fragment of human IgG, as an immunopotentiator, elicited high titer of RBD-specific antibodies with robust neutralizing activity against both pseudotyped and live SARS-CoV-2 infections. The mouse antisera could also effectively neutralize infection by pseudotyped SARS-CoV-2 with several natural mutations in RBD and the IgG extracted from the mouse antisera could also show neutralization against pseudotyped SARS-CoV and SARS-related coronavirus (SARSr-CoV). Vaccination of human ACE2 transgenic mice with RBD-Fc could effectively protect mice from the SARS-CoV-2 challenge. These results suggest that SARS-CoV-2 RBD-Fc has good potential to be further developed as an effective and broad-spectrum vaccine to prevent infection of the current SARS-CoV-2 and its mutants, as well as future emerging SARSr-CoVs and re-emerging SARS-CoV.

3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313429

ABSTRACT

Accumulating mutations on SARS-CoV-2 Spike (S) protein may increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, in a panel of receptor binding domain (S-RBD) specific monoclonal antibodies (mAbs) with high neutralizing potency against authentic SARS-CoV-2, at least 6 of them were found to efficiently block the pseudovirus of 501Y.V2, a highly transmissible SARS-CoV-2 variant with escape mutations. The top 3 neutralizing Abs (13G9, 58G6 and 510A5) exhibited comparative ultrapotency as those being actively pursued for clinical development. Interestingly, the antigenic sites for the majority of our neutralizing Abs overlapped with a single epitope (13G9e) on S-RBD. Further, the 3-dimensional structures of 2 ultrapotent neutralizing Abs 13G9 or 58G6 in complex with SARS-CoV-2 S trimer demonstrated that both Abs bound to a steric region within S 472–490 . Moreover, a specific linear region (S 450–457 ) was identified as an additional target for 58G6. Importantly, our cryo-electron microscopy (cryo-EM) analysis revealed a unique phenomenon that the S-RBDs interacting with the fragments of antigen binding (Fabs) of 13G9 or 58G6 encoded by the IGHV1-58 and the IGKV3-20 gene segments were universally in the ‘up’ conformation in all observed particles. The potent neutralizing Abs presented in the current study may be promising candidates to fulfill the urgent needs for the current pandemic of SARS-CoV-2, and may of fundamental value for the next-generation vaccine development.

4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-325159

ABSTRACT

At least three months have been passed since the outbreak of the severe acute respiratory disease, COVID-19 in Wuhan city, China in December 2019, caused by the infection of a novel coronavirus, SARS-CoV-2. 1,2 . Due to its rapid spread throughout China and abroad, knowledge sharing for both its epidemiology and clinic manifestations is urgently need. Here we analyzed the clinical, molecular and immunological data from 326 confirmed cases of SARS-CoV-2 infection in Shanghai. Genomic sequences assembled from 112 quality samples together with uploaded sequences in Global Initiative on Sharing All Influenza Data (GISAID) showed a stable evolution and suggested two major lineages with differential exposure history during the earliest outbreak in Wuhan. Nevertheless, they exhibited similar virulence and clinical outcomes. Lymphocytopenia, especially the reduced CD4+ and CD8+ T cell counts upon admission, was predictive of disease progression. High level of IL-6 and IL-8 during treatment was observed in severe and critical patients and correlated with decreased lymphocyte count. The determinants of disease severity seemed to stem mostly from host factors such age, lymphocytopenia and its associated cytokine storm whereas viral genetic variation did not significantly affect the outcomes. This comprehensive analysis on the molecular, immunological and clinical data provides a panorama of the key determinants related to the disease outcomes which should be helpful for improving the current combat against this extremely aggressive pandemic.Authors Xiaonan Zhang, Yun Tan, Yun Ling, Gang Lu, Feng Liu, and Zhigang Yi contributed equally to this work.

5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: covidwho-1671749

ABSTRACT

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2-infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.


Subject(s)
COVID-19/drug therapy , Interferon-alpha/pharmacology , SARS-CoV-2/drug effects , Transcriptome , Virus Replication/drug effects , Animals , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cloning, Molecular , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Profiling , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Interferon-alpha/genetics , Interferon-alpha/immunology , Mice , Protein Isoforms/classification , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/pharmacology , Recombinant Proteins/classification , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Signal Transduction , Vero Cells
6.
Cell Res ; 32(3): 269-287, 2022 03.
Article in English | MEDLINE | ID: covidwho-1634806

ABSTRACT

The emergence of SARS-CoV-2 variants and potentially other highly pathogenic sarbecoviruses in the future highlights the need for pan-sarbecovirus vaccines. Here, we discovered a new STING agonist, CF501, and found that CF501-adjuvanted RBD-Fc vaccine (CF501/RBD-Fc) elicited significantly stronger neutralizing antibody (nAb) and T cell responses than Alum- and cGAMP-adjuvanted RBD-Fc in mice. Vaccination of rabbits and rhesus macaques (nonhuman primates, NHPs) with CF501/RBD-Fc elicited exceptionally potent nAb responses against SARS-CoV-2 and its nine variants and 41 S-mutants, SARS-CoV and bat SARSr-CoVs. CF501/RBD-Fc-immunized hACE2-transgenic mice were almost completely protected against SARS-CoV-2 challenge, even 6 months after the initial immunization. NHPs immunized with a single dose of CF501/RBD-Fc produced high titers of nAbs. The immunized macaques also exhibited durable humoral and cellular immune responses and showed remarkably reduced viral load in the upper and lower airways upon SARS-CoV-2 challenge even at 108 days post the final immunization. Thus, CF501/RBD-Fc can be further developed as a novel pan-sarbecovirus vaccine to combat current and future outbreaks of sarbecovirus diseases.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Macaca mulatta , Mice , Rabbits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes
8.
Nat Commun ; 12(1): 6304, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500462

ABSTRACT

Accumulating mutations in the SARS-CoV-2 Spike (S) protein can increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, 3 receptor binding domain (RBD) specific monoclonal antibodies (mAbs), 58G6, 510A5 and 13G9, with high neutralizing potency blocking authentic SARS-CoV-2 virus display remarkable efficacy against authentic B.1.351 virus. Surprisingly, structural analysis has revealed that 58G6 and 13G9 both recognize the steric region S470-495 on the RBD, overlapping the E484K mutation presented in B.1.351. Also, 58G6 directly binds to another region S450-458 in the RBD. Significantly, 58G6 and 510A5 both demonstrate prophylactic efficacy against authentic SARS-CoV-2 and B.1.351 viruses in the transgenic mice expressing human ACE2 (hACE2), protecting weight loss and reducing virus loads. Together, we have evidenced 2 potent neutralizing Abs with unique mechanism targeting authentic SARS-CoV-2 mutants, which can be promising candidates to fulfill the urgent needs for the prolonged COVID-19 pandemic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Binding Sites , COVID-19/pathology , COVID-19/virology , Epitopes , Humans , Mice , Mice, Transgenic , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Load/drug effects , Weight Loss/drug effects
9.
J Virol ; 96(1): e0149221, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1476391

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in more than 235 million cases worldwide and 4.8 million deaths (October 2021), with various incidences and mortalities among regions/ethnicities. The coronaviruses SARS-CoV, SARS-CoV-2, and HCoV-NL63 utilize the angiotensin-converting enzyme 2 (ACE2) as the receptor to enter cells. We hypothesized that the genetic variability in ACE2 may contribute to the variable clinical outcomes of COVID-19. To test this hypothesis, we first conducted an in silico investigation of single-nucleotide polymorphisms (SNPs) in the coding region of ACE2. We then applied an integrated approach of genetics, biochemistry, and virology to explore the capacity of select ACE2 variants to bind coronavirus spike proteins and mediate viral entry. We identified the ACE2 D355N variant that restricts the spike protein-ACE2 interaction and consequently limits infection both in vitro and in vivo. In conclusion, ACE2 polymorphisms could modulate susceptibility to SARS-CoV-2, which may lead to variable disease severity. IMPORTANCE There is considerable variation in disease severity among patients infected with SARS-CoV-2, the virus that causes COVID-19. Human genetic variation can affect disease outcome, and the coronaviruses SARS-CoV, SARS-CoV-2, and HCoV-NL63 utilize human ACE2 as the receptor to enter cells. We found that several missense ACE2 single-nucleotide variants (SNVs) that showed significantly altered binding with the spike proteins of SARS-CoV, SARS-CoV-2, and NL63-HCoV. We identified an ACE2 SNP, D355N, that restricts the spike protein-ACE2 interaction and consequently has the potential to protect individuals against SARS-CoV-2 infection. Our study highlights that ACE2 polymorphisms could impact human susceptibility to SARS-CoV-2, which may contribute to ethnic and geographical differences in SARS-CoV-2 spread and pathogenicity.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Genetic Predisposition to Disease/genetics , Angiotensin-Converting Enzyme 2/metabolism , Genetic Variation , Humans , Polymorphism, Single Nucleotide , Protein Binding , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
10.
Nat Commun ; 12(1): 5026, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1363491

ABSTRACT

Nationwide prospective surveillance of all-age patients with acute respiratory infections was conducted in China between 2009‒2019. Here we report the etiological and epidemiological features of the 231,107 eligible patients enrolled in this analysis. Children <5 years old and school-age children have the highest viral positivity rate (46.9%) and bacterial positivity rate (30.9%). Influenza virus, respiratory syncytial virus and human rhinovirus are the three leading viral pathogens with proportions of 28.5%, 16.8% and 16.7%, and Streptococcus pneumoniae, Mycoplasma pneumoniae and Klebsiella pneumoniae are the three leading bacterial pathogens (29.9%, 18.6% and 15.8%). Negative interactions between viruses and positive interactions between viral and bacterial pathogens are common. A Join-Point analysis reveals the age-specific positivity rate and how this varied for individual pathogens. These data indicate that differential priorities for diagnosis, prevention and control should be highlighted in terms of acute respiratory tract infection patients' demography, geographic locations and season of illness in China.


Subject(s)
Bacteria/isolation & purification , Bacterial Infections/microbiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Virus Diseases/virology , Viruses/isolation & purification , Adolescent , Adult , Bacteria/classification , Bacteria/genetics , Bacterial Infections/epidemiology , Child , Child, Preschool , China/epidemiology , Female , Humans , Infant , Male , Prospective Studies , Respiratory Tract Infections/epidemiology , Seasons , Virus Diseases/epidemiology , Viruses/classification , Viruses/genetics , Young Adult
11.
J Hazard Mater ; 424(Pt A): 127391, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1446842

ABSTRACT

Personal protective equipment (PPE) such as face masks is vital in battling the COVID-19 crisis, but the dominant polypropylene-based PPE are lack of antiviral/antibacterial activities and environmental friendliness, and have hazardous impact on the soil and aquatic ecosystems. The work presented herein focused on developing biodegradable, antiviral, and antibacterial cellulose nonwovens (AVAB-CNWs) as a multi-functional bioprotective layer for better protection against coronavirus SARS-CoV-2 and addressing environmental concerns raised by the piling of COVID-19 related wastes. Both guanidine-based polymer and neomycin sulfate (NEO) were reactive-modified and covalently grafted onto the surface of cellulose nonwovens, thereby conferring outstanding antiviral and antibacterial activities to the nonwovens without deteriorating the microstructure and biodegradability. Through adjusting the grafting amount of active components and selecting appropriate reagents for pretreatment, the antimicrobial activity and hydrophobicity for self-cleaning of the nonwovens can be tuned. More importantly, we demonstrated for the first time that such multi-functional nonwovens are capable of inactivating SARS-CoV-2 instantly, leading to high virucidal activity (> 99.35%), which is unachievable by conventional masks used nowadays. Meanwhile, the robust breathability and biodegradability of AVAB-CNWs were well maintained. The applications of the as-prepared nonwovens as high-performance textile can be readily extended to other areas in the fight against COVID-19.


Subject(s)
Antiviral Agents , COVID-19 , Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Cellulose , Ecosystem , Humans , Microplastics , Plastics , SARS-CoV-2
12.
Protein Cell ; 2021 Sep 23.
Article in English | MEDLINE | ID: covidwho-1432661

ABSTRACT

New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design. Here, we identified a receptor-binding domain (RBD)-binding antibody, XG014, which potently neutralizes ß-coronavirus lineage B (ß-CoV-B), including SARS-CoV-2, its circulating variants, SARS-CoV and bat SARSr-CoV WIV1. Interestingly, antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibody-dependent SARS-CoV-2 spike (S) protein-mediated cell-cell fusion, suggesting a unique mode of recognition by XG014. Structural analyses reveal that XG014 recognizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional "down" conformation, while its family member XG005 directly competes with ACE2 binding and position the RBD "up". Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo. Our findings suggest the potential to develop XG014 as pan-ß-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines against ß-CoV-B and newly emerging SARS-CoV-2 variants of concern.

13.
Sci Bull (Beijing) ; 66(9): 925-936, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1386590

ABSTRACT

The SARS-CoV-2 infection is spreading rapidly worldwide. Efficacious antiviral therapeutics against SARS-CoV-2 is urgently needed. Here, we discovered that protoporphyrin IX (PpIX) and verteporfin, two Food and Drug Administration (FDA)-approved drugs, completely inhibited the cytopathic effect produced by SARS-CoV-2 infection at 1.25 µmol/L and 0.31 µmol/L, respectively, and their EC50 values of reduction of viral RNA were at nanomolar concentrations. The selectivity indices of PpIX and verteporfin were 952.74 and 368.93, respectively, suggesting a broad margin of safety. Importantly, PpIX and verteporfin prevented SARS-CoV-2 infection in mice adenovirally transduced with human angiotensin-converting enzyme 2 (ACE2). The compounds, sharing a porphyrin ring structure, were shown to bind viral receptor ACE2 and interfere with the interaction between ACE2 and the receptor-binding domain of viral S protein. Our study suggests that PpIX and verteporfin are potent antiviral agents against SARS-CoV-2 infection and sheds new light on developing novel chemoprophylaxis and chemotherapy against SARS-CoV-2.

14.
Signal Transduct Target Ther ; 6(1): 288, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1333906

ABSTRACT

The COVID-19 pandemic poses a global threat to public health and economy. The continuously emerging SARS-CoV-2 variants present a major challenge to the development of antiviral agents and vaccines. In this study, we identified that EK1 and cholesterol-coupled derivative of EK1, EK1C4, as pan-CoV fusion inhibitors, exhibit potent antiviral activity against SARS-CoV-2 infection in both lung- and intestine-derived cell lines (Calu-3 and Caco2, respectively). They are also effective against infection of pseudotyped SARS-CoV-2 variants B.1.1.7 (Alpha) and B.1.1.248 (Gamma) as well as those with mutations in S protein, including N417T, E484K, N501Y, and D614G, which are common in South African and Brazilian variants. Crystal structure revealed that EK1 targets the HR1 domain in the SARS-CoV-2 S protein to block virus-cell fusion and provide mechanistic insights into its broad and effective antiviral activity. Nasal administration of EK1 peptides to hACE2 transgenic mice significantly reduced viral titers in lung and intestinal tissues. EK1 showed good safety profiles in various animal models, supporting further clinical development of EK1-based pan-CoV fusion inhibitors against SARS-CoV-2 and its variants.


Subject(s)
Antiviral Agents , COVID-19/drug therapy , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Caco-2 Cells , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Mice, Transgenic , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
15.
Nat Commun ; 12(1): 2114, 2021 04 09.
Article in English | MEDLINE | ID: covidwho-1174670

ABSTRACT

Lack of detailed knowledge of SARS-CoV-2 infection has been hampering the development of treatments for coronavirus disease 2019 (COVID-19). Here, we report that RNA triggers the liquid-liquid phase separation (LLPS) of the SARS-CoV-2 nucleocapsid protein, N. By analyzing all 29 proteins of SARS-CoV-2, we find that only N is predicted as an LLPS protein. We further confirm the LLPS of N during SARS-CoV-2 infection. Among the 100,849 genome variants of SARS-CoV-2 in the GISAID database, we identify that ~37% (36,941) of the genomes contain a specific trio-nucleotide polymorphism (GGG-to-AAC) in the coding sequence of N, which leads to the amino acid substitutions, R203K/G204R. Interestingly, NR203K/G204R exhibits a higher propensity to undergo LLPS and a greater effect on IFN inhibition. By screening the chemicals known to interfere with N-RNA binding in other viruses, we find that (-)-gallocatechin gallate (GCG), a polyphenol from green tea, disrupts the LLPS of N and inhibits SARS-CoV-2 replication. Thus, our study reveals that targeting N-RNA condensation with GCG could be a potential treatment for COVID-19.


Subject(s)
Amino Acid Substitution/drug effects , COVID-19/prevention & control , Catechin/analogs & derivatives , Nucleocapsid Proteins/genetics , SARS-CoV-2/drug effects , Virus Replication/drug effects , COVID-19/virology , Catechin/pharmacology , Genome, Viral/genetics , Humans , Liquid-Liquid Extraction , Nucleocapsid Proteins/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , Virus Replication/genetics
16.
PLoS Pathog ; 17(3): e1009392, 2021 03.
Article in English | MEDLINE | ID: covidwho-1148252

ABSTRACT

Coronavirus interaction with its viral receptor is a primary genetic determinant of host range and tissue tropism. SARS-CoV-2 utilizes ACE2 as the receptor to enter host cell in a species-specific manner. We and others have previously shown that ACE2 orthologs from New World monkey, koala and mouse cannot interact with SARS-CoV-2 to mediate viral entry, and this defect can be restored by humanization of the restrictive residues in New World monkey ACE2. To better understand the genetic determinants behind the ability of ACE2 orthologs to support viral entry, we compared koala and mouse ACE2 sequences with that of human and identified the key residues in koala and mouse ACE2 that restrict viral receptor activity. Humanization of these critical residues rendered both koala and mouse ACE2 capable of binding the spike protein and facilitating viral entry. Our study shed more lights into the genetic determinants of ACE2 as the functional receptor of SARS-CoV-2, which facilitates our understanding of viral entry.


Subject(s)
COVID-19/enzymology , COVID-19/genetics , Peptidyl-Dipeptidase A/genetics , Receptors, Virus/genetics , SARS-CoV-2/physiology , Animals , Base Sequence , COVID-19/virology , Host Specificity , Humans , Mice/genetics , Mice/virology , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Phascolarctidae/genetics , Phascolarctidae/virology , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Sequence Alignment , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
17.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: covidwho-1117490

ABSTRACT

The pandemic of COVID-19, caused by SARS-CoV-2, is a major global health threat. Epidemiological studies suggest that bats (Rhinolophus affinis) are the natural zoonotic reservoir for SARS-CoV-2. However, the host range of SARS-CoV-2 and intermediate hosts that facilitate its transmission to humans remain unknown. The interaction of coronavirus with its host receptor is a key genetic determinant of host range and cross-species transmission. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as the receptor to enter host cells in a species-dependent manner. In this study, we characterized the ability of ACE2 from diverse species to support viral entry. By analyzing the conservation of five residues in two virus-binding hotspots of ACE2 (hotspot 31Lys and hotspot 353Lys), we predicted 80 ACE2 proteins from mammals that could potentially mediate SARS-CoV-2 entry. We chose 48 ACE2 orthologs among them for functional analysis, and showed that 44 of these orthologs-including domestic animals, pets, livestock, and animals commonly found in zoos and aquaria-could bind the SARS-CoV-2 spike protein and support viral entry. In contrast, New World monkey ACE2 orthologs could not bind the SARS-CoV-2 spike protein and support viral entry. We further identified the genetic determinant of New World monkey ACE2 that restricts viral entry using genetic and functional analyses. These findings highlight a potentially broad host tropism of SARS-CoV-2 and suggest that SARS-CoV-2 might be distributed much more widely than previously recognized, underscoring the necessity to monitor susceptible hosts to prevent future outbreaks.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/veterinary , Receptors, Virus/genetics , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Host Specificity , Humans , Pandemics/prevention & control , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Protein Binding , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism , Viral Zoonoses/genetics , Viral Zoonoses/prevention & control , Viral Zoonoses/virology , Virus Attachment , Virus Internalization
18.
Nat Commun ; 12(1): 961, 2021 02 11.
Article in English | MEDLINE | ID: covidwho-1078585

ABSTRACT

The global spread of SARS-CoV-2 is posing major public health challenges. One feature of SARS-CoV-2 spike protein is the insertion of multi-basic residues at the S1/S2 subunit cleavage site. Here, we find that the virus with intact spike (Sfull) preferentially enters cells via fusion at the plasma membrane, whereas a clone (Sdel) with deletion disrupting the multi-basic S1/S2 site utilizes an endosomal entry pathway. Using Sdel as model, we perform a genome-wide CRISPR screen and identify several endosomal entry-specific regulators. Experimental validation of hits from the CRISPR screen shows that host factors regulating the surface expression of angiotensin-converting enzyme 2 (ACE2) affect entry of Sfull virus. Animal-to-animal transmission with the Sdel virus is reduced compared to Sfull in the hamster model. These findings highlight the critical role of the S1/S2 boundary of SARS-CoV-2 spike protein in modulating virus entry and transmission and provide insights into entry of coronaviruses.


Subject(s)
COVID-19/virology , CRISPR-Cas Systems , Genome-Wide Association Study , Host-Pathogen Interactions , SARS-CoV-2/physiology , Virus Internalization , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/genetics , Chlorocebus aethiops , Disease Models, Animal , Endosomes/virology , HeLa Cells , Humans , Mesocricetus , Serine Endopeptidases , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
19.
Cell Rep ; 34(5): 108699, 2021 02 02.
Article in English | MEDLINE | ID: covidwho-1044918

ABSTRACT

Several potent neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus have been identified. However, antibody-dependent enhancement (ADE) has not been comprehensively studied for SARS-CoV-2, and the relationship between enhancing versus neutralizing activities and antibody epitopes remains unknown. Here, we select a convalescent individual with potent IgG neutralizing activity and characterize his antibody response. Monoclonal antibodies isolated from memory B cells target four groups of five non-overlapping receptor-binding domain (RBD) epitopes. Antibodies to one group of these RBD epitopes mediate ADE of entry in Raji cells via an Fcγ receptor-dependent mechanism. In contrast, antibodies targeting two other distinct epitope groups neutralize SARS-CoV-2 without ADE, while antibodies against the fourth epitope group are poorly neutralizing. One antibody, XG014, potently cross-neutralizes SARS-CoV-2 variants, as well as SARS-CoV-1, with respective IC50 (50% inhibitory concentration) values as low as 5.1 and 23.7 ng/mL, while not exhibiting ADE. Therefore, neutralization and ADE of human SARS-CoV-2 antibodies correlate with non-overlapping RBD epitopes.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody-Dependent Enhancement , Epitopes/immunology , Adolescent , Adult , Aged , Antibodies, Monoclonal/immunology , Antibodies, Viral/therapeutic use , Antigen-Antibody Reactions , COVID-19/drug therapy , COVID-19/immunology , COVID-19/virology , Cell Line , Child , Cluster Analysis , Female , Humans , Inhibitory Concentration 50 , Male , Middle Aged , Protein Domains/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Young Adult
20.
Signal Transduct Target Ther ; 5(1): 282, 2020 11 27.
Article in English | MEDLINE | ID: covidwho-947524

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed serious threats to global health and economy, thus calling for the development of safe and effective vaccines. The receptor-binding domain (RBD) in the spike protein of SARS-CoV-2 is responsible for its binding to angiotensin-converting enzyme 2 (ACE2) receptor. It contains multiple dominant neutralizing epitopes and serves as an important antigen for the development of COVID-19 vaccines. Here, we showed that immunization of mice with a candidate subunit vaccine consisting of SARS-CoV-2 RBD and Fc fragment of human IgG, as an immunopotentiator, elicited high titer of RBD-specific antibodies with robust neutralizing activity against both pseudotyped and live SARS-CoV-2 infections. The mouse antisera could also effectively neutralize infection by pseudotyped SARS-CoV-2 with several natural mutations in RBD and the IgG extracted from the mouse antisera could also show neutralization against pseudotyped SARS-CoV and SARS-related coronavirus (SARSr-CoV). Vaccination of human ACE2 transgenic mice with RBD-Fc could effectively protect mice from the SARS-CoV-2 challenge. These results suggest that SARS-CoV-2 RBD-Fc has good potential to be further developed as an effective and broad-spectrum vaccine to prevent infection of the current SARS-CoV-2 and its mutants, as well as future emerging SARSr-CoVs and re-emerging SARS-CoV.


Subject(s)
Antibodies, Neutralizing/pharmacology , COVID-19 Vaccines/pharmacology , COVID-19/drug therapy , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Epitopes/immunology , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/pharmacology , Mice , Mice, Inbred BALB C , Pandemics , Protein Binding/drug effects , Protein Binding/immunology , Receptors, Virus/genetics , Receptors, Virus/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL