Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Signal Transduct Target Ther ; 7(1): 61, 2022 02 25.
Article in English | MEDLINE | ID: covidwho-1758178

ABSTRACT

Variants are globally emerging very quickly following pandemic prototypic SARS-CoV-2. To evaluate the cross-protection of prototypic SARS-CoV-2 vaccine against its variants, we vaccinated rhesus monkeys with three doses of prototypic SARS-CoV-2 inactivated vaccine, followed by challenging with emerging SARS-CoV-2 variants of concern (VOCs). These vaccinated animals produced neutralizing antibodies against Alpha, Beta, Delta, and Omicron variants, although there were certain declinations of geometric mean titer (GMT) as compared with prototypic SARS-CoV-2. Of note, in vivo this prototypic vaccine not only reduced the viral loads in nasal, throat and anal swabs, pulmonary tissues, but also improved the pathological changes in the lung infected by variants of Alpha, Beta, and Delta. In summary, the prototypic SARS-CoV-2 inactivated vaccine in this study protected against VOCs to certain extension, which is of great significance for prevention and control of COVID-19.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Cross Protection , SARS-CoV-2/drug effects , Vaccination/methods , Vaccines, Inactivated/administration & dosage , Anal Canal/virology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/immunology , COVID-19/virology , Humans , Immunogenicity, Vaccine , Lung/virology , Macaca mulatta , Male , Nasal Cavity/virology , Pharynx/virology , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/virology , Viral Load/drug effects
2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323928

ABSTRACT

Background: In December 2019, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, Hubei, China. Moreover, it has become a global pandemic. This is of great value in describing the clinical symptoms of COVID-19 patients in detail and looking for markers which are significant to predict the prognosis of COVID-19 patients. Methods: In this multicenter, retrospective study, 476 patients with COVID-19 were enrolled from a consecutive series. After screening, a total of 395 patients were included in this study. All-cause death was the primary endpoint. All patients were followed up from admission till discharge or death. Results: The main symptoms observed in the study included fever on admission, cough, fatigue, and shortness of breath. The most common comorbidities were hypertension and diabetes mellitus. Patients with lower CD4 + T cell level were older and more often male compared to those with higher CD4 + T cell level. Reduced CD8 + T cell level was an indicator of the severity of COVID-19. Both decreased CD4 + T [HR:13.659;95%CI: 3.235-57.671] and CD8 + T [HR: 10.883;95%CI: 3.277-36.145] cell levels were associated with in-hospital death in COVID-19 patients, but only the decrease of CD4 + T cell level was an independent predictor of in-hospital death in COVID-19 patients. Conclusions: Reductions in lymphocytes and lymphocyte subsets were common in COVID-19 patients, especially in severe cases of COVID-19. It was the CD8 + T cell level, not the CD4 + T cell level, that reflected the severity of the patient’s disease. Only reduced CD4 + T cell level was independently associated with increased in-hospital death in COVID-19 patients. Trial registration: Prognostic Factors of Patients With COVID-19, NCT04292964. Registered 03 March 2020. https://clinicaltrials.gov/ct2/show/NCT04292964. Retrospectively registered.

5.
J Med Virol ; 93(3): 1732-1738, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196496

ABSTRACT

The coronavirus disease 2019 pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) had led to a serious public health crisis, and no specific treatments or vaccines are available yet. A nucleocapsid protein (NP)-based enzyme-linked immunosorbent assay (ELISA) detection method is not only important in disease diagnosis, but is required for the evaluation of vaccine efficacy during the development of an inactivated SARS-CoV-2 vaccine. In this study, we expressed both the NP and N-terminally truncated NP (ΔN-NP) of SARS-CoV-2 in an Escherichia coli expression system and described the purification of the soluble recombinant NP and ΔN-NP in details. The identities of the NP and ΔN-NP were confirmed with mass spectrometry. We then used immunoglobulin G detection ELISAs to compare the sensitivity of NP and ΔN-NP in detecting anti-SARS-CoV-2 antibodies. ΔN-NP showed greater sensitivity than NP in the analysis of serially diluted sera from mice and rabbits vaccinated with inactive SARS-CoV-2 and in human sera diluted 1:400. ΔN-NP showed a positive detection rate similar to that of the SARS-CoV-2 S protein in human sera. We conclude that ΔN-NP is a better serological marker than NP for evaluating the immunogenicity of inactivated SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Inactivated/immunology , Animals , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/genetics , Humans , Mice , Mice, Inbred BALB C , Phosphoproteins/genetics , Phosphoproteins/immunology , Rabbits , SARS-CoV-2/genetics , Sequence Deletion/genetics , Sequence Deletion/immunology , Spike Glycoprotein, Coronavirus/genetics
6.
Cell Host Microbe ; 28(1): 124-133.e4, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-378130

ABSTRACT

Since December 2019, a novel coronavirus SARS-CoV-2 has emerged and rapidly spread throughout the world, resulting in a global public health emergency. The lack of vaccine and antivirals has brought an urgent need for an animal model. Human angiotensin-converting enzyme II (ACE2) has been identified as a functional receptor for SARS-CoV-2. In this study, we generated a mouse model expressing human ACE2 (hACE2) by using CRISPR/Cas9 knockin technology. In comparison with wild-type C57BL/6 mice, both young and aged hACE2 mice sustained high viral loads in lung, trachea, and brain upon intranasal infection. Although fatalities were not observed, interstitial pneumonia and elevated cytokines were seen in SARS-CoV-2 infected-aged hACE2 mice. Interestingly, intragastric inoculation of SARS-CoV-2 was seen to cause productive infection and lead to pulmonary pathological changes in hACE2 mice. Overall, this animal model described here provides a useful tool for studying SARS-CoV-2 transmission and pathogenesis and evaluating COVID-19 vaccines and therapeutics.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections , Disease Models, Animal , Mice, Inbred C57BL , Pandemics , Pneumonia, Viral , Aging , Angiotensin-Converting Enzyme 2 , Animals , Brain/virology , COVID-19 , CRISPR-Cas Systems , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokines/blood , Gene Knock-In Techniques , Lung/pathology , Lung/virology , Lung Diseases, Interstitial/pathology , Nose/virology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , RNA, Viral/analysis , SARS-CoV-2 , Stomach/virology , Trachea/virology , Viral Load , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL