Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Stroke Cerebrovasc Dis ; 30(12): 106121, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1415617

ABSTRACT

BACKGROUND: There is little information regarding the safety of intravenous tissue plasminogen activator (IV-tPA) in patients with stroke and COVID-19. METHODS: This multicenter study included consecutive stroke patients with and without COVID-19 treated with IV-tPA between February 18, 2019, to December 31, 2020, at 9 centers participating in the CASCADE initiative. Clinical outcomes included modified Rankin Scale (mRS) at hospital discharge, in-hospital mortality, the rate of hemorrhagic transformation. Using Bayesian multiple regression and after adjusting for variables with significant value in univariable analysis, we reported the posterior adjusted odds ratio (OR, with 95% Credible Intervals [CrI]) of the main outcomes. RESULTS: A total of 545 stroke patients, including 101 patients with COVID-19 were evaluated. Patients with COVID-19 had a more severe stroke at admission. In the study cohort, 85 (15.9%) patients had a hemorrhagic transformation, and 72 (13.1%) died in the hospital. After adjustment for confounding variables, discharge mRS score ≥2 (OR: 0.73, 95% CrI: 0.16, 3.05), in-hospital mortality (OR: 2.06, 95% CrI: 0.76, 5.53), and hemorrhagic transformation (OR: 1.514, 95% CrI: 0.66, 3.31) were similar in COVID-19 and non COVID-19 patients. High-sensitivity C reactive protein level was a predictor of hemorrhagic transformation in all cases (OR:1.01, 95%CI: 1.0026, 1.018), including those with COVID-19 (OR:1.024, 95%CI:1.002, 1.054). CONCLUSION: IV-tPA treatment in patients with acute ischemic stroke and COVID-19 was not associated with an increased risk of disability, mortality, and hemorrhagic transformation compared to those without COVID-19. IV-tPA should continue to be considered as the standard of care in patients with hyper acute stroke and COVID-19.


Subject(s)
COVID-19/complications , Fibrinolytic Agents/administration & dosage , Ischemic Stroke/drug therapy , Thrombolytic Therapy , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/mortality , Disability Evaluation , Europe , Female , Fibrinolytic Agents/adverse effects , Hospital Mortality , Humans , Infusions, Intravenous , Intracranial Hemorrhages/chemically induced , Iran , Ischemic Stroke/complications , Ischemic Stroke/diagnosis , Ischemic Stroke/mortality , Male , Middle Aged , Risk Assessment , Risk Factors , Thrombolytic Therapy/adverse effects , Thrombolytic Therapy/mortality , Time Factors , Treatment Outcome
2.
Rev Med Virol ; : e2289, 2021 Sep 09.
Article in English | MEDLINE | ID: covidwho-1400976

ABSTRACT

Since the Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), our understanding regarding the pathophysiology and clinical manifestations of this disease have been improving. However, we still have limited data on long-term effects and lingering symptoms of post COVID-19 recovery. Despite predilection of COVID-19 for lungs, multiple extra-pulmonary manifestations appear in multiple organs and biological systems and with continued infection and recovery worldwide. It is necessary that clinicians provide patients with previous SARS-CoV-2 infection with expectations of long-term effects during or after recovery from COVID-19. Herein, we review the long-term impact of COVID-19 on different organ systems reported from different clinical studies. Understanding risk factors and signs and symptoms of long-term consequences after recovery from COVID-19 will allow for proper follow-up and management of the disease post recovery.

4.
Front Cardiovasc Med ; 8: 649922, 2021.
Article in English | MEDLINE | ID: covidwho-1186796

ABSTRACT

Since the early days of the pandemic, there have been several reports of cerebrovascular complications during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Numerous studies proposed a role for SARS-CoV-2 in igniting stroke. In this review, we focused on the pathoetiology of stroke among the infected patients. We pictured the results of the SARS-CoV-2 invasion to the central nervous system (CNS) via neuronal and hematogenous routes, in addition to viral infection in peripheral tissues with extensive crosstalk with the CNS. SARS-CoV-2 infection results in pro-inflammatory cytokine and chemokine release and activation of the immune system, COVID-19-associated coagulopathy, endotheliitis and vasculitis, hypoxia, imbalance in the renin-angiotensin system, and cardiovascular complications that all may lead to the incidence of stroke. Critically ill patients, those with pre-existing comorbidities and patients taking certain medications, such as drugs with elevated risk for arrhythmia or thrombophilia, are more susceptible to a stroke after SARS-CoV-2 infection. By providing a pictorial narrative review, we illustrated these associations in detail to broaden the scope of our understanding of stroke in SARS-CoV-2-infected patients. We also discussed the role of antiplatelets and anticoagulants for stroke prevention and the need for a personalized approach among patients with SARS-CoV-2 infection.

5.
Int J Clin Pract ; 75(6): e14124, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1132932

ABSTRACT

BACKGROUND: Controversy exists regarding the drug selection in hypertension (HTN) management in patients with COVID-19. This study aimed to compare the effects of losartan and amlodipine in patients with primary HTN and COVID-19. METHODS: In this randomised clinical trial, hospitalised patients with COVID-19 and primary HTN were enrolled in the study. One arm received losartan, 25 mg, twice a day and the other arm received amlodipine, 5 mg per day for 2 weeks. The main outcomes were compare 30-day mortality rate and length of hospital stay. RESULTS: The mean age of patients treated with losartan (N = 41) and amlodipine (N = 39) was 67.3 ± 14.8 and 60.1 ± 17.3 years, respectively (P value = .068). The length of hospital stay in losartan and amlodipine groups was 4.57 ± 2.59 and 7.30 ± 8.70 days, respectively (P value = .085). Also, the length of ICU admission in losartan and amlodipine group was 7.13 ± 5.99 and 7.15 ± 9.95 days, respectively (P value = .994). The 30-day mortality was two and five patients in losartan and amlodipine groups, respectively (P value = .241). CONCLUSIONS: There was no priority in losartan or amlodipine administration in COVID-19 patients with primary HTN in decreasing mortality rate, hospital and ICU length stay. Further studies need to clarify the first-line anti-HTN medications in COVID-19.


Subject(s)
COVID-19 , Hypertension , Aged , Aged, 80 and over , Amlodipine/therapeutic use , Antihypertensive Agents/therapeutic use , Blood Pressure , Double-Blind Method , Humans , Hypertension/drug therapy , Losartan/pharmacology , Losartan/therapeutic use , Middle Aged , SARS-CoV-2 , Treatment Outcome
6.
J Clin Med ; 10(5)2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-1124907

ABSTRACT

BACKGROUND: SARS-CoV-2 infected patients are suggested to have a higher incidence of thrombotic events such as acute ischemic strokes (AIS). This study aimed at exploring vascular comorbidity patterns among SARS-CoV-2 infected patients with subsequent stroke. We also investigated whether the comorbidities and their frequencies under each subclass of TOAST criteria were similar to the AIS population studies prior to the pandemic. METHODS: This is a report from the Multinational COVID-19 Stroke Study Group. We present an original dataset of SASR-CoV-2 infected patients who had a subsequent stroke recorded through our multicenter prospective study. In addition, we built a dataset of previously reported patients by conducting a systematic literature review. We demonstrated distinct subgroups by clinical risk scoring models and unsupervised machine learning algorithms, including hierarchical K-Means (ML-K) and Spectral clustering (ML-S). RESULTS: This study included 323 AIS patients from 71 centers in 17 countries from the original dataset and 145 patients reported in the literature. The unsupervised clustering methods suggest a distinct cohort of patients (ML-K: 36% and ML-S: 42%) with no or few comorbidities. These patients were more than 6 years younger than other subgroups and more likely were men (ML-K: 59% and ML-S: 60%). The majority of patients in this subgroup suffered from an embolic-appearing stroke on imaging (ML-K: 83% and ML-S: 85%) and had about 50% risk of large vessel occlusions (ML-K: 50% and ML-S: 53%). In addition, there were two cohorts of patients with large-artery atherosclerosis (ML-K: 30% and ML-S: 43% of patients) and cardioembolic strokes (ML-K: 34% and ML-S: 15%) with consistent comorbidity and imaging patterns. Binominal logistic regression demonstrated that ischemic heart disease (odds ratio (OR), 4.9; 95% confidence interval (CI), 1.6-14.7), atrial fibrillation (OR, 14.0; 95% CI, 4.8-40.8), and active neoplasm (OR, 7.1; 95% CI, 1.4-36.2) were associated with cardioembolic stroke. CONCLUSIONS: Although a cohort of young and healthy men with cardioembolic and large vessel occlusions can be distinguished using both clinical sub-grouping and unsupervised clustering, stroke in other patients may be explained based on the existing comorbidities.

7.
J Neurol ; 268(10): 3549-3560, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1092677

ABSTRACT

BACKGROUND: Since the emergence of COVID-19 pandemic, several cases of cerebral venous sinus thrombosis (CVST) have been reported in SARS-CoV-2 infected individuals. METHODS: Consecutive patients with documented SARS-CoV-2 infection, as well as clinical and radiological characteristics of CVST, were reported from three teaching hospitals in the South West, North West, and the center of Iran between June and July 2020. We also searched the abstract archives until the end of August 2020 and gathered 28 reported cases. The diagnostic criteria for SARS-CoV-2 infection were determined according to SARS-CoV-2 detection in oropharyngeal or nasopharyngeal samples in clinically suspected patients. Demographics, prominent COVID-19 symptoms, confirmatory tests for SARS-CoV-2 infection diagnosis, the interval between the diagnosis of SARS-CoV-2 infection and CVST, clinical and radiological features of CVST, therapeutic strategies, CVST outcomes, rate of hemorrhagic transformation, and mortality rate were investigated. RESULTS: Six patients (31-62 years-old) with confirmed CVST and SARS-CoV-2 infection were admitted to our centers. Four patients had no respiratory symptoms of SARS-CoV-2 infection. Five patients developed the clinical manifestations of CVST and SARS-CoV-2 infection simultaneously. Three patients had known predisposing factors for CVST. Despite receiving CVST and SARS-CoV-2 infection treatments, four patients died. SARS-COV-2 associated CVST patients were older (49.26 vs. 37.77 years-old), had lower female/male ratio (1.42 vs. 2.19), and higher mortality rate (35.29% vs. 6.07%) than CVST not associated with COVID-19. CONCLUSIONS: The role of SARS-CoV-2 as a "cause" versus an "additive contributor" remains to be elucidated. Practitioners should be aware of the possibility of CVST in SARS-CoV-2 infection.


Subject(s)
COVID-19 , Sinus Thrombosis, Intracranial , Adult , Female , Humans , Male , Middle Aged , Pandemics , Research , SARS-CoV-2 , Sinus Thrombosis, Intracranial/complications , Sinus Thrombosis, Intracranial/diagnostic imaging , Sinus Thrombosis, Intracranial/epidemiology
9.
J Neurol Sci ; 419: 117183, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-1023662

ABSTRACT

BACKGROUND: SARS-CoV-2 induced coagulopathy can lead to thrombotic complications such as stroke. Cerebral venous sinus thrombosis (CVST) is a less common type of stroke which might be triggered by COVID-19. We present a series of CVST cases with SARS-CoV-2 infection. METHODS: In a multinational retrospective study, we collected all cases of CVST in SARS-CoV-2 infected patients admitted to nine tertiary stroke centers from the beginning of the pandemic to June 30th, 2020. We compared the demographics, clinical and radiological characteristics, risk factors, and outcome of these patients with a control group of non-SARS-CoV-2 infected CVST patients in the same seasonal period of the years 2012-2016 from the country where the majority of cases were recruited. RESULTS: A total of 13 patients fulfilled the inclusion criteria (62% women, mean age 50.9 ± 11.2 years). Six patients were discharged with good outcomes (mRS ≤ 2) and three patients died in hospital. Compared to the control group, the SARS-CoV-2 infected patients were significantly older (50.9 versus 36.7 years, p < 0.001), had a lower rate of identified CVST risk factors (23.1% versus 84.2%, p < 0.001), had more frequent cortical vein involvement (38.5% versus 10.5%, p: 0.025), and a non-significant higher rate of in-hospital mortality (23.1% versus 5.3%, p: 0.073). CONCLUSION: CVST should be considered as potential comorbidity in SARS-CoV-2 infected patients presenting with neurological symptoms. Our data suggest that compared to non-SARS-CoV-2 infected patients, CVST occurs in older patients, with lower rates of known CVST risk factors and might lead to a poorer outcome in the SARS-CoV-2 infected group.


Subject(s)
COVID-19/complications , SARS-CoV-2 , Sinus Thrombosis, Intracranial/etiology , Adult , Aged , COVID-19/blood , Female , Humans , Length of Stay/statistics & numerical data , Male , Middle Aged , Pandemics , Retrospective Studies , Sinus Thrombosis, Intracranial/diagnostic imaging , Tertiary Care Centers/statistics & numerical data , Thrombophilia/etiology
10.
J Neuroimaging ; 31(2): 228-243, 2021 03.
Article in English | MEDLINE | ID: covidwho-1015550

ABSTRACT

BACKGROUND AND PURPOSE: The ongoing Coronavirus Disease 2019 (COVID-19) pandemic is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is occasionally associated with manifold diseases of the central nervous system (CNS). We sought to present the neuroimaging features of such CNS involvement. In addition, we sought to identify typical neuroimaging patterns that could indicate possible COVID-19-associated neurological manifestations. METHODS: In this systematic literature review, typical neuroimaging features of cerebrovascular diseases and inflammatory processes associated with COVID-19 were analyzed. Reports presenting individual patient data were included in further quantitative analysis with descriptive statistics. RESULTS: We identified 115 studies reporting a total of 954 COVID-19 patients with associated neurological manifestations and neuroimaging alterations. A total of 95 (82.6%) of the identified studies were single case reports or case series, whereas 660 (69.2%) of the reported cases included individual information and were thus included in descriptive statistical analysis. Ischemia with neuroimaging patterns of large vessel occlusion event was revealed in 59.9% of ischemic stroke patients, whereas 69.2% of patients with intracerebral hemorrhage exhibited bleeding in a location that was not associated with hypertension. Callosal and/or juxtacortical location was identified in 58.7% of cerebral microbleed positive images. Features of hemorrhagic necrotizing encephalitis were detected in 28.8% of patients with meningo-/encephalitis. CONCLUSIONS: Manifold CNS involvement is increasingly reported in COVID-19 patients. Typical and atypical neuroimaging features have been observed in some disease entities, so that familiarity with these imaging patterns appears reasonable and may assist clinicians in the differential diagnosis of COVID-19 CNS manifestations.


Subject(s)
Brain/diagnostic imaging , COVID-19/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neuroimaging , Pandemics , Tomography, X-Ray Computed
11.
Ther Adv Neurol Disord ; 13: 1756286420978004, 2020.
Article in English | MEDLINE | ID: covidwho-972457

ABSTRACT

Neurological manifestations are not uncommon during infection with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A clear association has been reported between cerebrovascular disease and coronavirus disease 2019 (COVID-19). However, whether this association is causal or incidental is still unknown. In this narrative review, we sought to present the possible pathophysiological mechanisms linking COVID-19 and cerebrovascular disease, describe the stroke syndromes and their prognosis and discuss several clinical, radiological, and laboratory characteristics that may aid in the prompt recognition of cerebrovascular disease during COVID-19. A systematic literature search was conducted, and relevant information was abstracted. Angiotensin-converting enzyme-2 receptor dysregulation, uncontrollable immune reaction and inflammation, coagulopathy, COVID-19-associated cardiac injury with subsequent cardio-embolism, complications due to critical illness and prolonged hospitalization can all contribute as potential etiopathogenic mechanisms leading to diverse cerebrovascular clinical manifestations. Acute ischemic stroke, intracerebral hemorrhage, and cerebral venous sinus thrombosis have been described in case reports and cohorts of COVID-19 patients with a prevalence ranging between 0.5% and 5%. SARS-CoV-2-positive stroke patients have higher mortality rates, worse functional outcomes at discharge and longer duration of hospitalization as compared with SARS-CoV-2-negative stroke patients in different cohort studies. Specific demographic, clinical, laboratory and radiological characteristics may be used as 'red flags' to alarm clinicians in recognizing COVID-19-related stroke.

12.
Ann Neurol ; 89(2): 380-388, 2021 02.
Article in English | MEDLINE | ID: covidwho-938391

ABSTRACT

OBJECTIVE: Emerging data indicate an increased risk of cerebrovascular events with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and highlight the potential impact of coronavirus disease (COVID-19) on the management and outcomes of acute stroke. We conducted a systematic review and meta-analysis to evaluate the aforementioned considerations. METHODS: We performed a meta-analysis of observational cohort studies reporting on the occurrence and/or outcomes of patients with cerebrovascular events in association with their SARS-CoV-2 infection status. We used a random-effects model. Summary estimates were reported as odds ratios (ORs) and corresponding 95% confidence intervals (CIs). RESULTS: We identified 18 cohort studies including 67,845 patients. Among patients with SARS-CoV-2, 1.3% (95% CI = 0.9-1.6%, I2 = 87%) were hospitalized for cerebrovascular events, 1.1% (95% CI = 0.8-1.3%, I2 = 85%) for ischemic stroke, and 0.2% (95% CI = 0.1-0.3%, I2 = 64%) for hemorrhagic stroke. Compared to noninfected contemporary or historical controls, patients with SARS-CoV-2 infection had increased odds of ischemic stroke (OR = 3.58, 95% CI = 1.43-8.92, I2 = 43%) and cryptogenic stroke (OR = 3.98, 95% CI = 1.62-9.77, I2 = 0%). Diabetes mellitus was found to be more prevalent among SARS-CoV-2 stroke patients compared to noninfected historical controls (OR = 1.39, 95% CI = 1.00-1.94, I2 = 0%). SARS-CoV-2 infection status was not associated with the likelihood of receiving intravenous thrombolysis (OR = 1.42, 95% CI = 0.65-3.10, I2 = 0%) or endovascular thrombectomy (OR = 0.78, 95% CI = 0.35-1.74, I2 = 0%) among hospitalized ischemic stroke patients during the COVID-19 pandemic. Odds of in-hospital mortality were higher among SARS-CoV-2 stroke patients compared to noninfected contemporary or historical stroke patients (OR = 5.60, 95% CI = 3.19-9.80, I2 = 45%). INTERPRETATION: SARS-CoV-2 appears to be associated with an increased risk of ischemic stroke, and potentially cryptogenic stroke in particular. It may also be related to an increased mortality risk. ANN NEUROL 2021;89:380-388.


Subject(s)
COVID-19/epidemiology , Diabetes Mellitus/epidemiology , Hospital Mortality , SARS-CoV-2 , Stroke/epidemiology , Case-Control Studies , Comorbidity , Humans , Thrombectomy/statistics & numerical data , Thrombolytic Therapy/statistics & numerical data
13.
J Stroke Cerebrovasc Dis ; 29(12): 105321, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-872317

ABSTRACT

BACKGROUND: The emergence of the COVID-19 pandemic has significantly impacted global healthcare systems and this may affect stroke care and outcomes. This study examines the changes in stroke epidemiology and care during the COVID-19 pandemic in Zanjan Province, Iran. METHODS: This study is part of the CASCADE international initiative. From February 18, 2019, to July 18, 2020, we followed ischemic and hemorrhagic stroke hospitalization rates and outcomes in Valiasr Hospital, Zanjan, Iran. We used a Bayesian hierarchical model and an interrupted time series analysis (ITS) to identify changes in stroke hospitalization rate, baseline stroke severity [measured by the National Institutes of Health Stroke Scale (NIHSS)], disability [measured by the modified Rankin Scale (mRS)], presentation time (last seen normal to hospital presentation), thrombolytic therapy rate, median door-to-needle time, length of hospital stay, and in-hospital mortality. We compared in-hospital mortality between study periods using Cox-regression model. RESULTS: During the study period, 1,026 stroke patients were hospitalized. Stroke hospitalization rates per 100,000 population decreased from 68.09 before the pandemic to 44.50 during the pandemic, with a significant decline in both Bayesian [Beta: -1.034; Standard Error (SE): 0.22, 95% CrI: -1.48, -0.59] and ITS analysis (estimate: -1.03, SE = 0.24, p < 0.0001). Furthermore, we observed lower admission rates for patients with mild (NIHSS < 5) ischemic stroke (p < 0.0001). Although, the presentation time and door-to-needle time did not change during the pandemic, a lower proportion of patients received thrombolysis (-10.1%; p = 0.004). We did not see significant changes in admission rate to the stroke unit and in-hospital mortality rate; however, disability at discharge increased (p < 0.0001). CONCLUSION: In Zanjan, Iran, the COVID-19 pandemic has significantly impacted stroke outcomes and altered the delivery of stroke care. Observed lower admission rates for milder stroke may possibly be due to fear of exposure related to COVID-19. The decrease in patients treated with thrombolysis and the increased disability at discharge may indicate changes in the delivery of stroke care and increased pressure on existing stroke acute and subacute services. The results of this research will contribute to a similar analysis of the larger CASCADE dataset in order to confirm findings at a global scale and improve measures to ensure the best quality of care for stroke patients during the COVID-19 pandemic.


Subject(s)
Brain Ischemia/therapy , COVID-19 , Hospitalization/trends , Intracranial Hemorrhages/therapy , Outcome and Process Assessment, Health Care/trends , Stroke/therapy , Thrombolytic Therapy/trends , Time-to-Treatment/trends , Aged , Aged, 80 and over , Bayes Theorem , Brain Ischemia/diagnosis , Brain Ischemia/mortality , COVID-19/epidemiology , Female , Hospital Mortality/trends , Humans , Interrupted Time Series Analysis , Intracranial Hemorrhages/diagnosis , Intracranial Hemorrhages/mortality , Iran/epidemiology , Length of Stay/trends , Male , Middle Aged , Recovery of Function , Stroke/diagnosis , Stroke/mortality , Time Factors , Treatment Outcome
15.
Clin Neurol Neurosurg ; 198: 106217, 2020 11.
Article in English | MEDLINE | ID: covidwho-753769

ABSTRACT

SARS-CoV-2 mainly invades respiratory epithelial cells by adhesion to angiotensin-converting enzyme 2 (ACE-2) and thus, infected patients may develop mild to severe inflammatory responses and acute lung injury. Afferent impulses that result from the stimulation of pulmonary mechano-chemoreceptors, peripheral and central chemoreceptors by inflammatory cytokines are conducted to the brainstem. Integration and processing of these input signals occur within the central nervous system, especially in the limbic system and sensorimotor cortex, and importantly feedback regulation exists between O2, CO2, and blood pH. Despite the intensity of hypoxemia in COVID-19, the intensity of dyspnea sensation is inappropriate to the degree of hypoxemia in some patients (silent hypoxemia). We hypothesize that SARS-CoV-2 may cause neuronal damage in the corticolimbic network and subsequently alter the perception of dyspnea and the control of respiration. SARS-CoV-2 neuronal infection may change the secretion of numerous endogenous neuropeptides or neurotransmitters that distribute through large areas of the nervous system to produce cellular and perceptual effects. SARS-CoV-2 mainly enter to CNS via direct (neuronal and hematologic route) and indirect route. We theorize that SARS-CoV-2 infection-induced neuronal cell damage and may change the balance of endogenous neuropeptides or neurotransmitters that distribute through large areas of the nervous system to produce cellular and perceptual effects. Thus, SARS-CoV-2-associated neuronal damage may influence the control of respiration by interacting in neuromodulation. This would open up possible lines of study for the progress in the central mechanism of COVID-19-induced hypoxia. Future research is desirable to confirm or disprove such a hypothesis.


Subject(s)
Betacoronavirus , Central Nervous System Diseases/complications , Central Nervous System Diseases/virology , Coronavirus Infections/complications , Dyspnea/virology , Hypoxia/virology , Pneumonia, Viral/complications , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Prognosis , SARS-CoV-2
16.
J Racial Ethn Health Disparities ; 8(3): 732-742, 2021 06.
Article in English | MEDLINE | ID: covidwho-739703

ABSTRACT

OBJECTIVES: There is preliminary evidence of racial and social economic disparities in the population infected by and dying from COVID-19. The goal of this study is to report the associations of COVID-19 with respect to race, health, and economic inequality in the United States. METHODS: We performed an ecological study of the associations between infection and mortality rate of COVID-19 and demographic, socioeconomic, and mobility variables from 369 counties (total population, 102,178,117 [median, 73,447; IQR, 30,761-256,098]) from the seven most affected states (Michigan, New York, New Jersey, Pennsylvania, California, Louisiana, Massachusetts). RESULTS: The risk factors for infection and mortality are different. Our analysis shows that counties with more diverse demographics, higher population, education, income levels, and lower disability rates were at a higher risk of COVID-19 infection. However, counties with higher proportion with disability and poverty rates had a higher death rate. African Americans were more vulnerable to COVID-19 than other ethnic groups (1981 African American infected cases versus 658 Whites per million). Data on mobility changes corroborate the impact of social distancing. CONCLUSION: Our study provides evidence of racial, economic, and health inequality in the population infected by and dying from COVID-19. These observations might be due to the workforce of essential services, poverty, and access to care. Counties in more urban areas are probably better equipped at providing care. The lower rate of infection, but a higher death rate in counties with higher poverty and disability could be due to lower levels of mobility, but a higher rate of comorbidities and health care access.


Subject(s)
COVID-19/ethnology , Health Status Disparities , /statistics & numerical data , COVID-19/mortality , Female , Humans , Male , Risk Factors , Socioeconomic Factors , United States/epidemiology
17.
EBioMedicine ; 59: 102939, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-716658

ABSTRACT

BACKGROUND: There is an increased attention to stroke following SARS-CoV-2. The goal of this study was to better depict the short-term risk of stroke and its associated factors among SARS-CoV-2 hospitalized patients. METHODS: This multicentre, multinational observational study includes hospitalized SARS-CoV-2 patients from North and South America (United States, Canada, and Brazil), Europe (Greece, Italy, Finland, and Turkey), Asia (Lebanon, Iran, and India), and Oceania (New Zealand). The outcome was the risk of subsequent stroke. Centres were included by non-probability sampling. The counts and clinical characteristics including laboratory findings and imaging of the patients with and without a subsequent stroke were recorded according to a predefined protocol. Quality, risk of bias, and heterogeneity assessments were conducted according to ROBINS-E and Cochrane Q-test. The risk of subsequent stroke was estimated through meta-analyses with random effect models. Bivariate logistic regression was used to determine the parameters with predictive outcome value. The study was reported according to the STROBE, MOOSE, and EQUATOR guidelines. FINDINGS: We received data from 26,175 hospitalized SARS-CoV-2 patients from 99 tertiary centres in 65 regions of 11 countries until May 1st, 2020. A total of 17,799 patients were included in meta-analyses. Among them, 156(0.9%) patients had a stroke-123(79%) ischaemic stroke, 27(17%) intracerebral/subarachnoid hemorrhage, and 6(4%) cerebral sinus thrombosis. Subsequent stroke risks calculated with meta-analyses, under low to moderate heterogeneity, were 0.5% among all centres in all countries, and 0.7% among countries with higher health expenditures. The need for mechanical ventilation (OR: 1.9, 95% CI:1.1-3.5, p = 0.03) and the presence of ischaemic heart disease (OR: 2.5, 95% CI:1.4-4.7, p = 0.006) were predictive of stroke. INTERPRETATION: The results of this multi-national study on hospitalized patients with SARS-CoV-2 infection indicated an overall stroke risk of 0.5%(pooled risk: 0.9%). The need for mechanical ventilation and the history of ischaemic heart disease are the independent predictors of stroke among SARS-CoV-2 patients. FUNDING: None.


Subject(s)
Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Stroke/diagnosis , Adult , Aged , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/virology , Female , Hospitalization , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2 , Stroke/complications , Tertiary Care Centers
18.
Ther Adv Neurol Disord ; 13: 1756286420932036, 2020.
Article in English | MEDLINE | ID: covidwho-610846

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China and rapidly spread worldwide, with a vast majority of confirmed cases presenting with respiratory symptoms. Potential neurological manifestations and their pathophysiological mechanisms have not been thoroughly established. In this narrative review, we sought to present the neurological manifestations associated with coronavirus disease 2019 (COVID-19). Case reports, case series, editorials, reviews, case-control and cohort studies were evaluated, and relevant information was abstracted. Various reports of neurological manifestations of previous coronavirus epidemics provide a roadmap regarding potential neurological complications of COVID-19, due to many shared characteristics between these viruses and SARS-CoV-2. Studies from the current pandemic are accumulating and report COVID-19 patients presenting with dizziness, headache, myalgias, hypogeusia and hyposmia, but also with more serious manifestations including polyneuropathy, myositis, cerebrovascular diseases, encephalitis and encephalopathy. However, discrimination between causal relationship and incidental comorbidity is often difficult. Severe COVID-19 shares common risk factors with cerebrovascular diseases, and it is currently unclear whether the infection per se represents an independent stroke risk factor. Regardless of any direct or indirect neurological manifestations, the COVID-19 pandemic has a huge impact on the management of neurological patients, whether infected or not. In particular, the majority of stroke services worldwide have been negatively influenced in terms of care delivery and fear to access healthcare services. The effect on healthcare quality in the field of other neurological diseases is additionally evaluated.

SELECTION OF CITATIONS
SEARCH DETAIL
...