Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Respir Res ; 23(1): 210, 2022 Aug 21.
Article in English | MEDLINE | ID: covidwho-2002181

ABSTRACT

BACKGROUND: Diaphragmatic dysfunction is a major factor responsible for weaning failure in patients that underwent prolonged invasive mechanical ventilation for acute severe respiratory failure from COVID-19. This study hypothesizes that ultrasound measured diaphragmatic thickening fraction (DTF) could provide corroborating information for weaning COVID-19 patients from mechanical ventilation. METHODS: This was an observational, pragmatic, cross-section, multicenter study in 6 Italian intensive care units. DTF was assessed in COVID-19 patients undergoing weaning from mechanical ventilation from 1st March 2020 to 30th June 2021. Primary aim was to evaluate whether DTF is a predictive factor for weaning failure. RESULTS: Fifty-seven patients were enrolled, 25 patients failed spontaneous breathing trial (44%). Median length of invasive ventilation was 14 days (IQR 7-22). Median DTF within 24 h since the start of weaning was 28% (IQR 22-39%), RASS score (- 2 vs - 2; p = 0.031); Kelly-Matthay score (2 vs 1; p = 0.002); inspiratory oxygen fraction (0.45 vs 0.40; p = 0.033). PaO2/FiO2 ratio was lower (176 vs 241; p = 0.032) and length of intensive care stay was longer (27 vs 16.5 days; p = 0.025) in patients who failed weaning. The generalized linear regression model did not select any variables that could predict weaning failure. DTF was correlated with pH (RR 1.56 × 1027; p = 0.002); Kelly-Matthay score (RR 353; p < 0.001); RASS (RR 2.11; p = 0.003); PaO2/FiO2 ratio (RR 1.03; p = 0.05); SAPS2 (RR 0.71; p = 0.005); hospital and ICU length of stay (RR 1.22 and 0.79, respectively; p < 0.001 and p = 0.004). CONCLUSIONS: DTF in COVID-19 patients was not predictive of weaning failure from mechanical ventilation, and larger studies are needed to evaluate it in clinical practice further. Registered: ClinicalTrial.gov (NCT05019313, 24 August 2021).


Subject(s)
COVID-19 , Respiration, Artificial , Diaphragm/diagnostic imaging , Humans , Intensive Care Units , Ventilator Weaning
2.
Radiol Med ; 127(2): 162-173, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1626023

ABSTRACT

PURPOSE: COVID-19-related acute respiratory distress syndrome (ARDS) is characterized by the presence of signs of microvascular involvement at the CT scan, such as the vascular tree in bud (TIB) and the vascular enlargement pattern (VEP). Recent evidence suggests that TIB could be associated with an increased duration of invasive mechanical ventilation (IMV) and intensive care unit (ICU) stay. The primary objective of this study was to evaluate whether microvascular involvement signs could have a prognostic significance concerning liberation from IMV. MATERIAL AND METHODS: All the COVID-19 patients requiring IMV admitted to 16 Italian ICUs and having a lung CT scan recorded within 3 days from intubation were enrolled in this secondary analysis. Radiologic, clinical and biochemical data were collected. RESULTS: A total of 139 patients affected by COVID-19 related ARDS were enrolled. After grouping based on TIB or VEP detection, we found no differences in terms of duration of IMV and mortality. Extension of VEP and TIB was significantly correlated with ground-glass opacities (GGOs) and crazy paving pattern extension. A parenchymal extent over 50% of GGO and crazy paving pattern was more frequently observed among non-survivors, while a VEP and TIB extent involving 3 or more lobes was significantly more frequent in non-responders to prone positioning. CONCLUSIONS: The presence of early CT scan signs of microvascular involvement in COVID-19 patients does not appear to be associated with differences in duration of IMV and mortality. However, patients with a high extension of VEP and TIB may have a reduced oxygenation response to prone positioning. TRIAL REGISTRATION: NCT04411459.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/therapy , Microvessels/diagnostic imaging , Respiration, Artificial/methods , Tomography, X-Ray Computed/methods , Aged , Female , Humans , Intensive Care Units , Italy , Length of Stay/statistics & numerical data , Lung/diagnostic imaging , Male , Middle Aged , Prospective Studies , SARS-CoV-2
3.
Respir Med ; 189: 106665, 2021.
Article in English | MEDLINE | ID: covidwho-1475040

ABSTRACT

BACKGROUND: Health-related quality of life (HRQoL) impairment is often reported among COVID-19 ICU survivors, and little is known about their long-term outcomes. We evaluated the HRQoL trajectories between 3 months and 1 year after ICU discharge, the factors influencing these trajectories and the presence of clusters of HRQoL profiles in a population of COVID-19 patients who underwent invasive mechanical ventilation (IMV). Moreover, pathophysiological correlations of residual dyspnea were tested. METHODS: We followed up 178 survivors from 16 Italian ICUs up to one year after ICU discharge. HRQoL was investigated through the 15D instrument. Available pulmonary function tests (PFTs) and chest CT scans at 1 year were also collected. A linear mixed-effects model was adopted to identify factors associated with different HRQoL trajectories and a two-step cluster analysis was performed to identify HRQoL clusters. RESULTS: We found that HRQoL increased during the study period, especially for the significant increase of the physical dimensions, while the mental dimensions and dyspnea remained substantially unchanged. Four main 15D profiles were identified: full recovery (47.2%), bad recovery (5.1%) and two partial recovery clusters with mostly physical (9.6%) or mental (38.2%) dimensions affected. Gender, duration of IMV and number of comorbidities significantly influenced HRQoL trajectories. Persistent dyspnea was reported in 58.4% of patients, and weakly, but significantly, correlated with both DLCO and length of IMV. CONCLUSIONS: HRQoL impairment is frequent 1 year after ICU discharge, and the lowest recovery is found in the mental dimensions. Persistent dyspnea is often reported and weakly correlated with PFTs alterations. TRIAL REGISTRATION: NCT04411459.


Subject(s)
COVID-19/epidemiology , Intensive Care Units , Quality of Life , Respiration, Artificial , Respiratory Function Tests , Aged , Dyspnea/epidemiology , Female , Follow-Up Studies , Humans , Italy/epidemiology , Male , Middle Aged , Patient Discharge , Prospective Studies , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , Survivors
4.
Infection ; 50(1): 139-148, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1309093

ABSTRACT

PURPOSE: To investigate the prevalence, incidence and characteristics of bacterial infections and their impact on outcome in critically ill patients infected with COVID-19. METHODS: We conducted a prospective observational study in eight Italian ICUs from February to May 2020; data were collected through an interactive electronic database. Kaplan-Meier analysis (limit product method) was used to identify the occurrence of infections and risk of acquisition. RESULTS: During the study period 248 patients were recruited in the eight participating ICUs. Ninety (36.3%) patients developed at least one episode of secondary infection. An ICU length of stay between 7 and 14 days was characterized by a higher occurrence of infectious complications, with ventilator-associated pneumonia being the most frequent. At least one course of antibiotic therapy was given to 161 (64.9%) patients. Overall ICU and hospital mortality were 33.9% and 42.9%, respectively. Patients developing bacteremia had a higher risk of ICU mortality [45.9% vs. 31.6%, odds ratio 1.8 (95% CI 0.9-3.7), p = 0.069] and hospital mortality [56.8% vs. 40.3%, odds ratio 1.9 (95% CI 1.1-3.9), p = 0.04]. CONCLUSION: In critically ill patients infected with COVID-19 the incidence of bacterial infections is high and associated with worse outcomes. Regular microbiological surveillance and strict infection control measures are mandated.


Subject(s)
Bacterial Infections , COVID-19 , Bacterial Infections/epidemiology , Critical Illness , Humans , Intensive Care Units , Prospective Studies , SARS-CoV-2
5.
Qual Life Res ; 30(10): 2805-2817, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1225004

ABSTRACT

PURPOSE: The onset of the coronavirus disease 19 (COVID-19) pandemic in Italy induced a dramatic increase in the need for intensive care unit (ICU) beds for a large proportion of patients affected by COVID-19-related acute respiratory distress syndrome (ARDS). The aim of the present study was to describe the health-related quality of life (HRQoL) at 90 days after ICU discharge in a cohort of COVID-19 patients undergoing invasive mechanical ventilation and to compare it with an age and sex-matched sample from the general Italian and Finnish populations. Moreover, the possible associations between clinical, demographic, social factors, and HRQoL were investigated. METHODS: COVID-19 ARDS survivors from 16 participating ICUs were followed up until 90 days after ICU discharge and the HRQoL was evaluated with the 15D instrument. A parallel cohort of age and sex-matched Italian population from the same geographic areas was interviewed and a third group of matched Finnish population was extracted from the Finnish 2011 National Health survey. A linear regression analysis was performed to evaluate potential associations between the evaluated factors and HRQoL. RESULTS: 205 patients answered to the questionnaire. HRQoL of the COVID-19 ARDS patients was significantly lower than the matched populations in both physical and mental dimensions. Age, sex, number of comorbidities, ARDS class, duration of invasive mechanical ventilation, and occupational status were found to be significant determinants of the 90 days HRQoL. Clinical severity at ICU admission was poorly correlated to HRQoL. CONCLUSION: COVID-19-related ARDS survivors at 90 days after ICU discharge present a significant reduction both on physical and psychological dimensions of HRQoL measured with the 15D instrument. TRIAL REGISTRATION: NCT04411459.


Subject(s)
COVID-19 , Critical Illness , Patient Discharge , Quality of Life , Respiratory Distress Syndrome , Survivors , Aged , Female , Follow-Up Studies , Humans , Intensive Care Units , Male , Middle Aged , Quality of Life/psychology , SARS-CoV-2/pathogenicity , Severity of Illness Index
6.
Ann Intensive Care ; 11(1): 63, 2021 Apr 26.
Article in English | MEDLINE | ID: covidwho-1202278

ABSTRACT

BACKGROUND: Prone positioning (PP) has been used to improve oxygenation in patients affected by the SARS-CoV-2 disease (COVID-19). Several mechanisms, including lung recruitment and better lung ventilation/perfusion matching, make a relevant rational for using PP. However, not all patients maintain the oxygenation improvement after returning to supine position. Nevertheless, no evidence exists that a sustained oxygenation response after PP is associated to outcome in mechanically ventilated COVID-19 patients. We analyzed data from 191 patients affected by COVID-19-related acute respiratory distress syndrome undergoing PP for clinical reasons. Clinical history, severity scores and respiratory mechanics were analyzed. Patients were classified as responders (≥ median PaO2/FiO2 variation) or non-responders (< median PaO2/FiO2 variation) based on the PaO2/FiO2 percentage change between pre-proning and 1 to 3 h after re-supination in the first prone positioning session. Differences among the groups in physiological variables, complication rates and outcome were evaluated. A competing risk regression analysis was conducted to evaluate if PaO2/FiO2 response after the first pronation cycle was associated to liberation from mechanical ventilation. RESULTS: The median PaO2/FiO2 variation after the first PP cycle was 49 [19-100%] and no differences were found in demographics, comorbidities, ventilatory treatment and PaO2/FiO2 before PP between responders (96/191) and non-responders (95/191). Despite no differences in ICU length of stay, non-responders had a higher rate of tracheostomy (70.5% vs 47.9, P = 0.008) and mortality (53.7% vs 33.3%, P = 0.006), as compared to responders. Moreover, oxygenation response after the first PP was independently associated to liberation from mechanical ventilation at 28 days and was increasingly higher being higher the oxygenation response to PP. CONCLUSIONS: Sustained oxygenation improvement after first PP session is independently associated to improved survival and reduced duration of mechanical ventilation in critically ill COVID-19 patients.

8.
J Intensive Care ; 8: 80, 2020.
Article in English | MEDLINE | ID: covidwho-863305

ABSTRACT

BACKGROUND: A large proportion of patients with coronavirus disease 2019 (COVID-19) develop severe respiratory failure requiring admission to the intensive care unit (ICU) and about 80% of them need mechanical ventilation (MV). These patients show great complexity due to multiple organ involvement and a dynamic evolution over time; moreover, few information is available about the risk factors that may contribute to increase the time course of mechanical ventilation.The primary objective of this study is to investigate the risk factors associated with the inability to liberate COVID-19 patients from mechanical ventilation. Due to the complex evolution of the disease, we analyzed both pulmonary variables and occurrence of non-pulmonary complications during mechanical ventilation. The secondary objective of this study was the evaluation of risk factors for ICU mortality. METHODS: This multicenter prospective observational study enrolled 391 patients from fifteen COVID-19 dedicated Italian ICUs which underwent invasive mechanical ventilation for COVID-19 pneumonia. Clinical and laboratory data, ventilator parameters, occurrence of organ dysfunction, and outcome were recorded. The primary outcome measure was 28 days ventilator-free days and the liberation from MV at 28 days was studied by performing a competing risks regression model on data, according to the method of Fine and Gray; the event death was considered as a competing risk. RESULTS: Liberation from mechanical ventilation was achieved in 53.2% of the patients (208/391). Competing risks analysis, considering death as a competing event, demonstrated a decreased sub-hazard ratio for liberation from mechanical ventilation (MV) with increasing age and SOFA score at ICU admission, low values of PaO2/FiO2 ratio during the first 5 days of MV, respiratory system compliance (CRS) lower than 40 mL/cmH2O during the first 5 days of MV, need for renal replacement therapy (RRT), late-onset ventilator-associated pneumonia (VAP), and cardiovascular complications.ICU mortality during the observation period was 36.1% (141/391). Similar results were obtained by the multivariate logistic regression analysis using mortality as a dependent variable. CONCLUSIONS: Age, SOFA score at ICU admission, CRS, PaO2/FiO2, renal and cardiovascular complications, and late-onset VAP were all independent risk factors for prolonged mechanical ventilation in patients with COVID-19. TRIAL REGISTRATION: NCT04411459.

SELECTION OF CITATIONS
SEARCH DETAIL