Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Vaccines (Basel) ; 10(9)2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2033183

ABSTRACT

We assessed the frequency and correlates of COVID-19 vaccine hesitancy before Canada's vaccine rollout. A cross-sectional vaccine hesitancy survey was completed by consecutive patients/family members/staff who received the influenza vaccine at McGill University affiliated hospitals. Based on the self-reported likelihood of receiving a future vaccine (scale 0-10), the following three groups were defined: non-hesitant (score 10), mildly hesitant (7.1-9.9), and significantly hesitant (0-7). Factors associated with vaccine hesitancy were assessed with multivariate logistic regression analyses and binomial logistic regression machine learning modelling. The survey was completed by 1793 people. Thirty-seven percent of participants (n = 669) were hesitant (mildly: 315 (17.6%); significantly: 354 (19.7%)). Lower education levels, opposition and uncertainty about vaccines being mandatory, feelings of not receiving enough information about COVID-19 prevention, perceived social pressure to get a future vaccine, vaccine safety concerns, uncertainty regarding the vaccine risk-benefit ratio, and distrust towards pharmaceutical companies were factors associated with vaccine hesitancy. Vaccine safety concerns and opposition to mandatory vaccinations were the strongest correlates of vaccine hesitancy in both the logistic regressions and the machine learning model. In conclusion, in this study, over a third of people immunized for influenza before the COVID-19 vaccine rollout expressed some degree of vaccine hesitancy. Effectively addressing COVID-19 vaccine safety concerns may enhance vaccine uptake.

2.
J Med Internet Res ; 23(2): e24246, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1573886

ABSTRACT

BACKGROUND: Predicting early respiratory failure due to COVID-19 can help triage patients to higher levels of care, allocate scarce resources, and reduce morbidity and mortality by appropriately monitoring and treating the patients at greatest risk for deterioration. Given the complexity of COVID-19, machine learning approaches may support clinical decision making for patients with this disease. OBJECTIVE: Our objective is to derive a machine learning model that predicts respiratory failure within 48 hours of admission based on data from the emergency department. METHODS: Data were collected from patients with COVID-19 who were admitted to Northwell Health acute care hospitals and were discharged, died, or spent a minimum of 48 hours in the hospital between March 1 and May 11, 2020. Of 11,525 patients, 933 (8.1%) were placed on invasive mechanical ventilation within 48 hours of admission. Variables used by the models included clinical and laboratory data commonly collected in the emergency department. We trained and validated three predictive models (two based on XGBoost and one that used logistic regression) using cross-hospital validation. We compared model performance among all three models as well as an established early warning score (Modified Early Warning Score) using receiver operating characteristic curves, precision-recall curves, and other metrics. RESULTS: The XGBoost model had the highest mean accuracy (0.919; area under the curve=0.77), outperforming the other two models as well as the Modified Early Warning Score. Important predictor variables included the type of oxygen delivery used in the emergency department, patient age, Emergency Severity Index level, respiratory rate, serum lactate, and demographic characteristics. CONCLUSIONS: The XGBoost model had high predictive accuracy, outperforming other early warning scores. The clinical plausibility and predictive ability of XGBoost suggest that the model could be used to predict 48-hour respiratory failure in admitted patients with COVID-19.


Subject(s)
COVID-19/physiopathology , Hospitalization , Intubation, Intratracheal/statistics & numerical data , Machine Learning , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/epidemiology , Aged , COVID-19/complications , Clinical Decision Rules , Early Warning Score , Emergency Service, Hospital , Female , Hospitals , Humans , Logistic Models , Male , Middle Aged , Patient Admission , ROC Curve , Respiratory Insufficiency/etiology , Retrospective Studies , SARS-CoV-2 , Triage
3.
Bioelectron Med ; 6: 14, 2020.
Article in English | MEDLINE | ID: covidwho-637250

ABSTRACT

BACKGROUND: The number of cases from the coronavirus disease 2019 (COVID-19) global pandemic has overwhelmed existing medical facilities and forced clinicians, patients, and families to make pivotal decisions with limited time and information. MAIN BODY: While machine learning (ML) methods have been previously used to augment clinical decisions, there is now a demand for "Emergency ML." Throughout the patient care pathway, there are opportunities for ML-supported decisions based on collected vitals, laboratory results, medication orders, and comorbidities. With rapidly growing datasets, there also remain important considerations when developing and validating ML models. CONCLUSION: This perspective highlights the utility of evidence-based prediction tools in a number of clinical settings, and how similar models can be deployed during the COVID-19 pandemic to guide hospital frontlines and healthcare administrators to make informed decisions about patient care and managing hospital volume.

4.
JAMA ; 323(20): 2052-2059, 2020 05 26.
Article in English | MEDLINE | ID: covidwho-101977

ABSTRACT

Importance: There is limited information describing the presenting characteristics and outcomes of US patients requiring hospitalization for coronavirus disease 2019 (COVID-19). Objective: To describe the clinical characteristics and outcomes of patients with COVID-19 hospitalized in a US health care system. Design, Setting, and Participants: Case series of patients with COVID-19 admitted to 12 hospitals in New York City, Long Island, and Westchester County, New York, within the Northwell Health system. The study included all sequentially hospitalized patients between March 1, 2020, and April 4, 2020, inclusive of these dates. Exposures: Confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by positive result on polymerase chain reaction testing of a nasopharyngeal sample among patients requiring admission. Main Outcomes and Measures: Clinical outcomes during hospitalization, such as invasive mechanical ventilation, kidney replacement therapy, and death. Demographics, baseline comorbidities, presenting vital signs, and test results were also collected. Results: A total of 5700 patients were included (median age, 63 years [interquartile range {IQR}, 52-75; range, 0-107 years]; 39.7% female). The most common comorbidities were hypertension (3026; 56.6%), obesity (1737; 41.7%), and diabetes (1808; 33.8%). At triage, 30.7% of patients were febrile, 17.3% had a respiratory rate greater than 24 breaths/min, and 27.8% received supplemental oxygen. The rate of respiratory virus co-infection was 2.1%. Outcomes were assessed for 2634 patients who were discharged or had died at the study end point. During hospitalization, 373 patients (14.2%) (median age, 68 years [IQR, 56-78]; 33.5% female) were treated in the intensive care unit care, 320 (12.2%) received invasive mechanical ventilation, 81 (3.2%) were treated with kidney replacement therapy, and 553 (21%) died. As of April 4, 2020, for patients requiring mechanical ventilation (n = 1151, 20.2%), 38 (3.3%) were discharged alive, 282 (24.5%) died, and 831 (72.2%) remained in hospital. The median postdischarge follow-up time was 4.4 days (IQR, 2.2-9.3). A total of 45 patients (2.2%) were readmitted during the study period. The median time to readmission was 3 days (IQR, 1.0-4.5) for readmitted patients. Among the 3066 patients who remained hospitalized at the final study follow-up date (median age, 65 years [IQR, 54-75]), the median follow-up at time of censoring was 4.5 days (IQR, 2.4-8.1). Conclusions and Relevance: This case series provides characteristics and early outcomes of sequentially hospitalized patients with confirmed COVID-19 in the New York City area.


Subject(s)
Betacoronavirus , Comorbidity , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , Coronavirus Infections/complications , Coronavirus Infections/mortality , Diabetes Complications , Female , Hospitalization , Humans , Hypertension/complications , Infant , Infant, Newborn , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Risk Factors , SARS-CoV-2 , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL