Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
N Engl J Med ; 386(10): 988-989, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1735345
2.
N Engl J Med ; 386(9): 837-846, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1721750

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection and hospitalization in infants. Nirsevimab is a monoclonal antibody to the RSV fusion protein that has an extended half-life. The efficacy and safety of nirsevimab in healthy late-preterm and term infants are uncertain. METHODS: We randomly assigned, in a 2:1 ratio, infants who had been born at a gestational age of at least 35 weeks to receive a single intramuscular injection of nirsevimab or placebo before the start of an RSV season. The primary efficacy end point was medically attended RSV-associated lower respiratory tract infection through 150 days after the injection. The secondary efficacy end point was hospitalization for RSV-associated lower respiratory tract infection through 150 days after the injection. RESULTS: A total of 1490 infants underwent randomization: 994 were assigned to the nirsevimab group and 496 to the placebo group. Medically attended RSV-associated lower respiratory tract infection occurred in 12 infants (1.2%) in the nirsevimab group and in 25 infants (5.0%) in the placebo group; these findings correspond to an efficacy of 74.5% (95% confidence interval [CI], 49.6 to 87.1; P<0.001) for nirsevimab. Hospitalization for RSV-associated lower respiratory tract infection occurred in 6 infants (0.6%) in the nirsevimab group and in 8 infants (1.6%) in the placebo group (efficacy, 62.1%; 95% CI, -8.6 to 86.8; P = 0.07). Among infants with data available to day 361, antidrug antibodies after baseline were detected in 58 of 951 (6.1%) in the nirsevimab group and in 5 of 473 (1.1%) in the placebo group. Serious adverse events were reported in 67 of 987 infants (6.8%) who received nirsevimab and in 36 of 491 infants (7.3%) who received placebo. CONCLUSIONS: A single injection of nirsevimab administered before the RSV season protected healthy late-preterm and term infants from medically attended RSV-associated lower respiratory tract infection. (Funded by MedImmune/AstraZeneca and Sanofi; MELODY ClinicalTrials.gov number, NCT03979313.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Infant, Premature, Diseases/prevention & control , Infant, Premature , Respiratory Syncytial Virus Infections/prevention & control , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Drug Administration Schedule , Female , Humans , Infant , Infant, Newborn , Injections, Intramuscular , Kaplan-Meier Estimate , Male
3.
J Epidemiol Community Health ; 2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1629386

ABSTRACT

BACKGROUND: Over the last 30 years, South Africa has experienced four 'colliding epidemics' of HIV and tuberculosis, chronic illness and mental health, injury and violence, and maternal, neonatal, and child mortality, which have had substantial effects on health and well-being. Using data from the 2019 Global Burden of Diseases, Injuries and Risk Factors Study (GBD 2019), we evaluated national and provincial health trends and progress towards important Sustainable Development Goal targets from 1990 to 2019. METHODS: We analysed GBD 2019 estimates of mortality, non-fatal health loss, summary health measures and risk factor burden, comparing trends over 1990-2007 and 2007-2019. Additionally, we decomposed changes in life expectancy by cause of death and assessed healthcare system performance. RESULTS: Across the nine provinces, inequalities in mortality and life expectancy increased over 1990-2007, largely due to differences in HIV/AIDS, then decreased over 2007-2019. Demographic change and increases in non-communicable diseases nearly doubled the number of years lived with disability between 1990 and 2019. From 1990 to 2019, risk factor burdens generally shifted from communicable and nutritional disease risks to non-communicable disease and injury risks; unsafe sex remained the top risk factor. Despite widespread improvements in healthcare system performance, the greatest gains were generally in economically advantaged provinces. CONCLUSIONS: Reductions in HIV/AIDS and related conditions have led to improved health since 2007, though most provinces still lag in key areas. To achieve health targets, provincial governments should enhance health investments and exchange of knowledge, resources and best practices alongside populations that have been left behind, especially following the COVID-19 pandemic.

4.
Vaccine ; 40(2): 306-315, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1569121

ABSTRACT

Correlates of protection for COVID-19 vaccines are urgently needed to license additional vaccines. We measured immune responses to four COVID-19 vaccines of proven efficacy using a single serological platform. IgG anti-Spike antibodies were highly correlated with ID50 neutralization in a validated pseudoviral assay and correlated significantly with efficacies for protection against infection with wild-type, alpha and delta variant SARS-CoV-2 virus. The protective threshold for each vaccine was calculated for IgG anti-Spike antibody. The mean protective threshold for all vaccine studies for WT virus was 154 BAU/ml (95 %CI 42-559), and for studies with antibody distributions that enabled precise estimation of thresholds (i.e. leaving out 2-dose mRNA regimens) was 60 BAU/ml (95 %CI 35-102). We propose that the proportion of individuals with responses above the appropriate protective threshold together with the geometric mean concentration can be used in comparative non-inferiority studies with licensed vaccines to ensure that new vaccines will be efficacious.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Spike Glycoprotein, Coronavirus
5.
Open forum infectious diseases ; 8(Suppl 1):S811-S812, 2021.
Article in English | EuropePMC | ID: covidwho-1564219

ABSTRACT

Background Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection (LRTI) in infants. Nirsevimab is a single-dose monoclonal antibody with extended half-life that was shown to protect preterm infants 29 to < 35 weeks gestation against RSV LRTI. However, most medically attended (MA) cases occur in otherwise healthy, term infants for whom there is currently no effective RSV prevention strategy. We report the primary analysis of efficacy and safety, along with the impact of nirsevimab in late preterm and term infants (≥ 35 weeks gestation) in the phase 3 MELODY study (NCT03979313). Methods Infants were randomized 2:1 to receive one intramuscular injection of nirsevimab (50 mg if < 5 kg;100 mg if ≥ 5 kg at dosing) or placebo entering their first RSV season. The primary endpoint was the incidence of MA RSV LRTI over 150 days postdose. Cases met predefined clinical criteria of disease severity and were confirmed by real-time reverse-transcriptase PCR. Safety was evaluated through 360 days postdose. Enrollment started on 23 July 2019 and was suspended following the declaration of the COVID-19 pandemic by the WHO on 11 March 2020. Results Overall, 1490 infants were randomized and included in the intent-to-treat population;1465 (98%) completed the 150-day efficacy follow-up, and 1367 (92%) completed the 360-day safety follow-up. The incidence of MA RSV LRTI was 1.2% (n=12/994) in the nirsevimab group and 5.0% (n=25/496) in the placebo group, giving nirsevimab an efficacy of 74.5% (95% confidence interval [CI]: 49.6, 87.1;p< 0.0001). Nirsevimab averted 93.6 (95% CI 63.0, 124.0) MA LRTIs per 1000 infants dosed. Nirsevimab was well tolerated, with similar rates of adverse events (87.4% nirsevimab;86.8% placebo) and serious adverse events (6.8% nirsevimab;7.3% placebo) between groups. Conclusion In this phase 3 study, a single dose of nirsevimab protected late preterm and term infants against MA RSV LRTI over an RSV season with a favorable safety profile. Approximately 11 infants need to be immunized to prevent 1 case of LRTI;nirsevimab has the potential to be an important intervention to reduce the burden of RSV LRTI in healthy infants. Disclosures Laura Hammitt, MD, MedImmune (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support)Merck & Co., Inc. (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support)Novavax (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support)Pfizer (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support) Laura Hammitt, MD, MedImmune (Individual(s) Involved: Self): Grant/Research Support, Research grant to my institution;Merck (Individual(s) Involved: Self): Grant/Research Support, Research grant to my institution;Pfizer (Individual(s) Involved: Self): Grant/Research Support, Research grant to my institution Ron Dagan, MD, Medimmune/AstraZeneca (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support)MSD (Consultant, Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member, Research Grant or Support, Speaker’s Bureau)Pfizer (Consultant, Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member, Research Grant or Support, Speaker’s Bureau) Yuan Yuan, PhD, AstraZeneca (Employee, Shareholder) Shabhir A. Mahdi, PhD, BMGF (Research Grant or Support)EDCTP (Research Grant or Support)GlaxoSmithKline (Research Grant or Support)Melody (Research Grant or Support)Minervax (Research Grant or Support)Novavax (Research Grant or Support)SAMRC (Research Grant or Support) William J. Muller, MD, PhD, Ansun (Scientific Research Study Investigator)Astellas (Scientific Research Study Investigator)AstraZeneca (Scientific Research Study Investigator)Genentech (Scientific Research Study Investigator)Gilead (Scientific Research Study Investigator)Janssen (Scientific Research tudy Investigator)Karius (Scientific Research Study Investigator)Melinta (Scientific Research Study Investigator)Merck (Scientific Research Study Investigator)Nabriva (Scientific Research Study Investigator)Seqirus (Scientific Research Study Investigator)Tetraphase (Scientific Research Study Investigator) William J. Muller, MD, PhD, Ansun (Individual(s) Involved: Self): Grant/Research Support;Astellas (Individual(s) Involved: Self): Research Grant or Support;AstraZeneca (Individual(s) Involved: Self): Grant/Research Support;BD (Individual(s) Involved: Self): Research Grant or Support;Eli Lilly (Individual(s) Involved: Self): Grant/Research Support;Gilead (Individual(s) Involved: Self): Grant/Research Support;Karius, Inc. (Individual(s) Involved: Self): Grant/Research Support, Scientific Research Study Investigator;Melinta (Individual(s) Involved: Self): Grant/Research Support;Merck (Individual(s) Involved: Self): Grant/Research Support;Moderna (Individual(s) Involved: Self): Grant/Research Support;Nabriva (Individual(s) Involved: Self): Grant/Research Support;Seqirus (Individual(s) Involved: Self): Consultant;Tetraphase (Individual(s) Involved: Self): Grant/Research Support Heather J. Zar, PhD, AstraZeneca (Grant/Research Support)Novavax (Grant/Research Support)Pfizer (Grant/Research Support, Advisor or Review Panel member) Dennis Brooks, MD, AstraZeneca (Employee) Amy Grenham, MSc, AstraZeneca (Employee, Shareholder) Ulrika Wählby Hamrén, PhD, AstraZeneca R&D (Employee, Shareholder) Vaishali S. Mankad, MD, AstraZeneca (Employee) Therese Takas, BSc, AstraZeneca (Employee, Other Financial or Material Support, Own stock in AstraZeneca) Jon Heinrichs, PhD, AstraZeneca (Shareholder)Bristol Myers Squibb (Shareholder)J&J (Shareholder)Merck (Shareholder)Organon (Shareholder)Procter & Gamble (Shareholder)Sanofi (Shareholder)Sanofi Pasteur (Employee) Amanda Leach, MRCPCH, AstraZeneca (Employee, Shareholder) M. Pamela Griffin, MD, AstraZeneca (Employee) Tonya L. Villafana, PhD, AstraZeneca (Employee)

6.
Influenza Other Respir Viruses ; 16(1): 34-47, 2022 01.
Article in English | MEDLINE | ID: covidwho-1526373

ABSTRACT

INTRODUCTION: We describe epidemiology and outcomes of confirmed SARS-CoV-2 infection and positive admissions among children <18 years in South Africa, an upper-middle income setting with high inequality. METHODS: Laboratory and hospital COVID-19 surveillance data, 28 January - 19 September 2020 was used. Testing rates were calculated as number of tested for SARS-CoV-2 divided by population at risk; test positivity rates were calculated as positive tests divided by total number of tests. In-hospital case fatality ratio (CFR) was calculated based on hospitalized positive admissions with outcome data who died in-hospital and whose death was judged SARS-CoV-2 related by attending physician. FINDINGS: 315 570 children aged <18 years were tested for SARS-CoV-2; representing 8.9% of all 3 548 738 tests and 1.6% of all children in the country. Of children tested, 46 137 (14.6%) were positive. Children made up 2.9% (n = 2007) of all SARS-CoV-2 positive admissions to sentinel hospitals. Among children, 47 died (2.6% case-fatality). In-hospital deaths were associated with male sex [adjusted odds ratio (aOR) 2.18 (95% confidence intervals [CI] 1.08-4.40)] vs female; age <1 year [aOR 4.11 (95% CI 1.08-15.54)], age 10-14 years [aOR 4.20 (95% CI1.07-16.44)], age 15-17 years [aOR 4.86 (95% 1.28-18.51)] vs age 1-4 years; admission to a public hospital [aOR 5.07(95% 2.01-12.76)] vs private hospital and ≥1 underlying conditions [aOR 12.09 (95% CI 4.19-34.89)] vs none. CONCLUSIONS: Children with underlying conditions were at greater risk of severe SARS-CoV-2 outcomes. Children > 10 years, those in certain provinces and those with underlying conditions should be considered for increased testing and vaccination.


Subject(s)
COVID-19 , Adolescent , Child , Child, Preschool , Female , Hospitals , Humans , Infant , Male , Risk Factors , SARS-CoV-2 , South Africa/epidemiology
7.
Pediatr Infect Dis J ; 40(12): e516-e519, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1416157

ABSTRACT

Antibodies to seasonal human-coronaviruses (sHCoV) may cross-protect against SARS-CoV-2. We investigated antibody responses in biobanked serum obtained before the pandemic from infants with polymerase chain reaction-confirmed sHCoV. Among 141 samples with antibodies to sHCoV, 4 (2.8%) were positive for SARS-CoV-2-S1 and 8 (5.7%) for SARS-CoV-2-S2. Antibodies to sHCoV rarely cross-react with SARS-CoV-2 antigens and are unlikely to account for mild pediatric illness.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Coronavirus Infections/virology , Coronavirus/immunology , SARS-CoV-2/immunology , Seasons , COVID-19/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Cross Reactions , Humans , Pneumonia, Viral , South Africa/epidemiology
8.
9.
Euro Surveill ; 26(29)2021 07.
Article in English | MEDLINE | ID: covidwho-1323058

ABSTRACT

BackgroundIn South Africa, COVID-19 control measures to prevent SARS-CoV-2 spread were initiated on 16 March 2020. Such measures may also impact the spread of other pathogens, including influenza virus and respiratory syncytial virus (RSV) with implications for future annual epidemics and expectations for the subsequent northern hemisphere winter.MethodsWe assessed the detection of influenza and RSV through facility-based syndromic surveillance of adults and children with mild or severe respiratory illness in South Africa from January to October 2020, and compared this with surveillance data from 2013 to 2019.ResultsFacility-based surveillance revealed a decline in influenza virus detection during the regular season compared with previous years. This was observed throughout the implementation of COVID-19 control measures. RSV detection decreased soon after the most stringent COVID-19 control measures commenced; however, an increase in RSV detection was observed after the typical season, following the re-opening of schools and the easing of measures.ConclusionCOVID-19 non-pharmaceutical interventions led to reduced circulation of influenza and RSV in South Africa. This has limited the country's ability to provide influenza virus strains for the selection of the annual influenza vaccine. Delayed increases in RSV case numbers may reflect the easing of COVID-19 control measures. An increase in influenza virus detection was not observed, suggesting that the measures may have impacted the two pathogens differently. The impact that lowered and/or delayed influenza and RSV circulation in 2020 will have on the intensity and severity of subsequent annual epidemics is unknown and warrants close monitoring.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Adult , Child , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , SARS-CoV-2 , South Africa/epidemiology
10.
Environ Health ; 20(1): 34, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1154012

ABSTRACT

BACKGROUND: An unusual feature of SARS-Cov-2 infection and the COVID-19 pandemic is that children are less severely affected than adults. This is especially paradoxical given the epidemiological links between poor air quality and increased COVID-19 severity in adults and that children are generally more vulnerable than adults to the adverse consequences of air pollution. OBJECTIVES: To identify gaps in knowledge about the factors that protect children from severe SARS-Cov-2 infection even in the face of air pollution, and to develop a transdisciplinary research strategy to address these gaps. METHODS: An international group of researchers interested in children's environmental health was invited to identify knowledge gaps and to develop research questions to close these gaps. DISCUSSION: Key research questions identified include: what are the effects of SAR-Cov-2 infection during pregnancy on the developing fetus and child; what is the impact of age at infection and genetic susceptibility on disease severity; why do some children with COVID-19 infection develop toxic shock and Kawasaki-like symptoms; what are the impacts of toxic environmental exposures including poor air quality, chemical and metal exposures on innate immunity, especially in the respiratory epithelium; what is the possible role of a "dirty" environment in conveying protection - an example of the "hygiene hypothesis"; and what are the long term health effects of SARS-Cov-2 infection in early life. CONCLUSION: A concerted research effort by a multidisciplinary team of scientists is needed to understand the links between environmental exposures, especially air pollution and COVID-19. We call for specific research funding to encourage basic and clinical research to understand if/why exposure to environmental factors is associated with more severe disease, why children appear to be protected, and how innate immune responses may be involved. Lessons learned about SARS-Cov-2 infection in our children will help us to understand and reduce disease severity in adults, the opposite of the usual scenario.


Subject(s)
COVID-19/epidemiology , Child Health , Environmental Exposure/adverse effects , Environmental Health , Adult , Age Factors , Air Pollution/adverse effects , Air Pollution/prevention & control , COVID-19/immunology , COVID-19/pathology , COVID-19/prevention & control , Child , Disease Susceptibility/epidemiology , Disease Susceptibility/immunology , Disease Susceptibility/pathology , Environmental Exposure/prevention & control , Fetal Development , Humans , Hygiene Hypothesis , Immunity, Innate , Respiratory System/pathology , Respiratory System/virology , SARS-CoV-2
11.
Front Pediatr ; 8: 614076, 2020.
Article in English | MEDLINE | ID: covidwho-1069741

ABSTRACT

The COVID-19 pandemic led to rapid global spread with far-reaching impacts on health-care systems. Whilst pediatric data consistently shown a milder disease course, chronic lung disease has been identified as a risk factor for hospitalization and severe disease. In Africa, comprised predominantly of low middle-income countries (LMIC), the additional burden of HIV, tuberculosis, malnutrition and overcrowding is high and further impacts health risk. This paper reviewed the literature on COVID-19 and chronic lung disease in children and provides our experience from an African pediatric pulmonary center in Cape Town, South Africa. South African epidemiological data confirms a low burden of severe disease with children <18 years comprising 8% of all diagnosed cases and 3% of all COVID-19 admissions. A decrease in hospital admission for other viral lower respiratory tract infections was found. While the pulmonology service manages children with a wide range of chronic respiratory conditions including bronchiectasis, cystic fibrosis, asthma, interstitial lung disease and children with tracheostomies, no significant increase in COVID-19 admissions were noted and in those who developed COVID-19, the disease course was not severe. Current evidence suggests that pre-existing respiratory disease in children does not appear to be a significant risk factor for severe COVID-19. Longitudinal data are still needed to assess risk in children with immunosuppression and interstitial lung diseases. The indirect impacts of the pandemic response on child respiratory health are notable and still likely to be fully realized and quantified. Ensuring children have access to full preventive and care services during this time is priority.

12.
J Pediatric Infect Dis Soc ; 10(5): 607-614, 2021 May 28.
Article in English | MEDLINE | ID: covidwho-1059650

ABSTRACT

BACKGROUND: Since non-epidemic, seasonal human coronaviruses (sHCoV) commonly infect children, an improved understanding of the epidemiology of these infections may offer insights into the context of severe acute respiratory syndrome (SARS)-CoV-2. We investigated the epidemiology of sHCoV infection during the first year of life, including risk factors and association with lower respiratory tract infection (LRTI). METHODS: We conducted a nested case-control study of infants enrolled in a birth cohort near Cape Town, South Africa, from 2012 to 2015. LRTI surveillance was implemented, and nasopharyngeal swabs were collected fortnightly over infancy. Quantitative PCR detected respiratory pathogens, including coronaviruses-229E, -NL63, -OC43, and -HKU1. Swabs were tested from infants at the time of LRTI and from the 90 days prior as well as from age-matched control infants from the cohort over the equivalent period. RESULTS: In total, 885 infants were included, among whom 464 LRTI events occurred. Of the 4751 samples tested for sHCoV, 9% tested positive, with HCoV-NL63 the most common. Seasonal HCoV detection was associated with LRTI; this association was strongest for coronavirus-OC43, which was also found in all sHCoV-associated hospitalizations. Birth in winter was associated with sHCoV-LRTI, but there were no clear seasonal differences in detection. Co-detection of Streptococcus pneumoniae was weakly associated with sHCoV-LRTI (odds ratio: 1.8; 95% confidence interval: 0.9-3.6); detection of other respiratory viruses or bacteria was not associated with sHCoV status. CONCLUSIONS: Seasonal HCoV infections were common and associated with LRTI, particularly sHCoV-OC43, which is most closely related to the SARS group of coronaviruses. Interactions of coronaviruses with bacteria in the pathogenesis of LRTI require further study.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Seasons , COVID-19/epidemiology , Case-Control Studies , Female , Humans , Infant , Infant, Newborn , Longitudinal Studies , Male , Risk Factors , South Africa/epidemiology
14.
S. Afr. Med. J. ; 8(110): 732-733, 20200801.
Article in English | WHO COVID, ELSEVIER | ID: covidwho-742973
16.
Paediatr Respir Rev ; 35: 70-74, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-613742

ABSTRACT

As the coronavirus pandemic extends to low and middle income countries (LMICs), there are growing concerns about the risk of coronavirus disease (COVID-19) in populations with high prevalence of comorbidities, the impact on health and economies more broadly and the capacity of existing health systems to manage the additional burden of COVID-19. The direct effects of COVID are less of a concern in children, who seem to be largely asymptomatic or to develop mild illness as occurs in high income countries; however children in LMICs constitute a high proportion of the population and may have a high prevalence of risk factors for severe lower respiratory infection such as HIV or malnutrition. Further diversion of resources from child health to address the pandemic among adults may further impact on care for children. Poor living conditions in LMICs including lack of sanitation, running water and overcrowding may facilitate transmission of SARS-CoV-2. The indirect effects of the pandemic on child health are of considerable concern, including increasing poverty levels, disrupted schooling, lack of access to school feeding schemes, reduced access to health facilities and interruptions in vaccination and other child health programs. Further challenges in LMICs include the inability to implement effective public health measures such as social distancing, hand hygiene, timely identification of infected people with self-isolation and universal use of masks. Lack of adequate personal protective equipment, especially N95 masks is a key concern for health care worker protection. While continued schooling is crucial for children in LMICs, provision of safe environments is especially challenging in overcrowded resource constrained schools. The current crisis is a harsh reminder of the global inequity in health in LMICs. The pandemic highlights key challenges to the provision of health in LMICs, but also provides opportunities to strengthen child health broadly in such settings.


Subject(s)
Child Health , Coronavirus Infections/epidemiology , Developing Countries , Pneumonia, Viral/epidemiology , Betacoronavirus , COVID-19 , Child , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Crowding , Education , HIV Infections/epidemiology , Humans , Malnutrition/epidemiology , Pandemics/prevention & control , Personal Protective Equipment/supply & distribution , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Poverty/statistics & numerical data , Risk Factors , SARS-CoV-2 , Sanitation/statistics & numerical data , Water Supply/statistics & numerical data
17.
J Allergy Clin Immunol Pract ; 8(8): 2592-2599.e3, 2020 09.
Article in English | MEDLINE | ID: covidwho-599331

ABSTRACT

BACKGROUND: It is unclear whether asthma may affect susceptibility or severity of coronavirus disease 2019 (COVID-19) in children and how pediatric asthma services worldwide have responded to the pandemic. OBJECTIVE: To describe the impact of the COVID-19 pandemic on pediatric asthma services and on disease burden in their patients. METHODS: An online survey was sent to members of the Pediatric Asthma in Real Life think tank and the World Allergy Organization Pediatric Asthma Committee. It included questions on service provision, disease burden, and the clinical course of confirmed cases of COVID-19 infection among children with asthma. RESULTS: Ninety-one respondents, caring for an estimated population of more than 133,000 children with asthma, completed the survey. COVID-19 significantly impacted pediatric asthma services: 39% ceased physical appointments, 47% stopped accepting new patients, and 75% limited patients' visits. Consultations were almost halved to a median of 20 (interquartile range, 10-25) patients per week. Virtual clinics and helplines were launched in most centers. Better than expected disease control was reported in 20% (10%-40%) of patients, whereas control was negatively affected in only 10% (7.5%-12.5%). Adherence also appeared to increase. Only 15 confirmed cases of COVID-19 were reported among the population; the estimated incidence is not apparently different from the reports of general pediatric cohorts. CONCLUSIONS: Children with asthma do not appear to be disproportionately affected by COVID-19. Outcomes may even have improved, possibly through increased adherence and/or reduced exposures. Clinical services have rapidly responded to the pandemic by limiting and replacing physical appointments with virtual encounters.


Subject(s)
Asthma/epidemiology , Asthma/physiopathology , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Appointments and Schedules , Asthma/therapy , Betacoronavirus , COVID-19 , Child , Global Health , Humans , Medication Adherence , Pandemics , SARS-CoV-2 , Severity of Illness Index , Telemedicine/organization & administration , Telemedicine/statistics & numerical data , Time Factors
19.
Pediatr Pulmonol ; 55(7): 1598-1600, 2020 07.
Article in English | MEDLINE | ID: covidwho-155146

ABSTRACT

The 2019 novel coronavirus (SARS-CoV-2) is endangering human health worldwide; scarcity of published pediatric cases and current literature and the absence of evidence-based guidelines necessitate international sharing of experience and personal communication. On 31 March 2020 the International Committee of the American Thoracic Society Pediatrics Assembly recorded an online podcast, during which pediatric pulmonologists worldwide shared their experience on the novel coronavirus disease (COVID-19) in children. The aim was to share personal experience in organizing pediatric care in different health care settings globally, protecting health care workers, and isolation practices. This manuscript summarizes the common themes of the podcast which centered around three main topics: more benign clinical disease and progression in pediatric cases compared to adults, a strong need for strategies to protect health care workers, and social or economic disparities as a barrier to successful pandemic control.


Subject(s)
Coronavirus Infections/epidemiology , Pediatrics/trends , Pneumonia, Viral/epidemiology , Webcasts as Topic , Adult , Betacoronavirus , COVID-19 , Child , Chronic Disease , Communicable Disease Control/methods , Coronavirus Infections/complications , Disease Progression , Global Health , Healthcare Disparities , Hospitalization , Hospitals, Pediatric/organization & administration , Humans , Internationality , Occupational Health , Pandemics , Pediatrics/methods , Pneumonia, Viral/complications , Pulmonary Medicine , Quarantine , Respiration Disorders/complications , SARS-CoV-2 , United States
SELECTION OF CITATIONS
SEARCH DETAIL