Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Biophys Rev ; : 1-21, 2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2228446

ABSTRACT

As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) "Resolution Revolution" made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps. After describing the history of the PDB and the Worldwide Protein Data Bank (wwPDB) partnership, which jointly manages both the PDB and EMDB archives, this review examines the origins of the resolution revolution and analyzes its impact on structural biology viewed through the lens of PDB holdings. Six areas of focus exemplifying the impact of 3DEM across the biosciences are discussed in detail (icosahedral viruses, ribosomes, integral membrane proteins, SARS-CoV-2 spike proteins, cryogenic electron tomography, and integrative structure determination combining 3DEM with complementary biophysical measurement techniques), followed by a review of 3DEM structure validation by the wwPDB that underscores the importance of community engagement.

2.
Biophysical reviews ; : 1-21, 2022.
Article in English | EuropePMC | ID: covidwho-2147144

ABSTRACT

As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) “Resolution Revolution” made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps. After describing the history of the PDB and the Worldwide Protein Data Bank (wwPDB) partnership, which jointly manages both the PDB and EMDB archives, this review examines the origins of the resolution revolution and analyzes its impact on structural biology viewed through the lens of PDB holdings. Six areas of focus exemplifying the impact of 3DEM across the biosciences are discussed in detail (icosahedral viruses, ribosomes, integral membrane proteins, SARS-CoV-2 spike proteins, cryogenic electron tomography, and integrative structure determination combining 3DEM with complementary biophysical measurement techniques), followed by a review of 3DEM structure validation by the wwPDB that underscores the importance of community engagement.

3.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology ; 36(Suppl 1), 2022.
Article in English | EuropePMC | ID: covidwho-1971010

ABSTRACT

Coronaviruses (Coronaviridae) such as SARS‐CoV‐2 (severe acute respiratory syndrome coronavirus) and MERS‐CoV (Middle East respiratory syndrome coronavirus) have been the source of recent outbreaks and global health concerns. While vaccines have been essential for controlling the SARS‐CoV‐2 (COVID‐19) pandemic, it is uncertain whether they will be effective against future coronavirus strains. Therefore, identification or design of a broad‐spectrum drug that targets highly conserved regions of the main protease of multiple coronavirus strains is essential in the long term. As part of a virtual summer research experience with the RCSB PDB, bioinformatics tools were employed to predict and construct 3D models of the coronavirus main protease (MPro) using SARS‐CoV‐2 as the template, with a focus on mutational trends and active sites. This study focused on the active sites of MPro, a cysteine protease essential for viral assembly and replication. Sequence alignments and structure modeling of MPro structures has identified conserved regions across multiple coronavirus strains. Inhibition of MPro halts coronavirus replication, making it an ideal drug target, and studies of MPro may foster and accelerate the discovery of high affinity broad‐spectrum drugs.

4.
Proteins ; 90(5): 1054-1080, 2022 05.
Article in English | MEDLINE | ID: covidwho-1826109

ABSTRACT

Understanding the molecular evolution of the SARS-CoV-2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three-dimensional structures of SARS-CoV-2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein-protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein-protein and protein-nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.


Subject(s)
COVID-19 , Pandemics , Amino Acids , Humans , Prospective Studies , Proteome , SARS-CoV-2 , Viral Proteins/genetics , Viral Proteins/metabolism
5.
The FASEB Journal ; 35(S1), 2021.
Article in English | Wiley | ID: covidwho-1233886

ABSTRACT

The Protein Data Bank (PDB) was established in 1971 as the first open-access digital data resource in biology. Beginning with only seven protein structures, the PDB archive has ballooned to >170,000 structures of proteins, DNA, and RNA (totaling >1 billion atoms). Today, the PDB is universally regarded as a core data science resource of fundamental importance to the wider life-science community and long-term preservation of machine-readable biological data. PDB structures are the molecules of life. Knowledge of 3D structures (shapes) of biomolecules, how they evolve with time, and how they function in nature is essential for understanding critical areas of science. PDB data impacts basic and applied research on health and disease of humans, animals, and plants;production of food and energy;and other research pertaining to global prosperity and environmental sustainability. Structure data are also important to biopharmaceutical and biotechnology companies, accelerating data-driven discovery of new drugs, materials, and devices. Today, powerful pulsed X-ray facilities, cryogenic electron microscopes, and new integrative/hybrid (I/H) methods for structure determination are accelerating biomedical research with functional insights into ever more complex biological systems at the atomic level. Cryo-electron tomography even allows study of molecular machines ?caught in the act? inside frozen cells. The PDB is managed by the Worldwide Protein Data Bank partnership (wwPDB;wwpdb.org). RCSB PDB (RCSB.org) operates the US wwPDB data center, and makes PDB data available at no charge and without limitations. The 50th anniversary of the PDB archive is being celebrated with special symposia and related resources, including a May 4-5 virtual meeting hosted by the ASBMB. These celebrations will include first hand accounts traversing five decades from the beginnings of structural biology all the way to ongoing efforts aimed at combatting the COVID-19 pandemic.

6.
Nucleic Acids Res ; 49(D1): D437-D451, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-936421

ABSTRACT

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), the US data center for the global PDB archive and a founding member of the Worldwide Protein Data Bank partnership, serves tens of thousands of data depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without restrictions to millions of RCSB.org users around the world, including >660 000 educators, students and members of the curious public using PDB101.RCSB.org. PDB data depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy, 3D electron microscopy and micro-electron diffraction. PDB data consumers accessing our web portals include researchers, educators and students studying fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. During the past 2 years, the research-focused RCSB PDB web portal (RCSB.org) has undergone a complete redesign, enabling improved searching with full Boolean operator logic and more facile access to PDB data integrated with >40 external biodata resources. New features and resources are described in detail using examples that showcase recently released structures of SARS-CoV-2 proteins and host cell proteins relevant to understanding and addressing the COVID-19 global pandemic.


Subject(s)
Computational Biology/methods , Databases, Protein , Macromolecular Substances/chemistry , Protein Conformation , Proteins/chemistry , Bioengineering/methods , Biomedical Research/methods , Biotechnology/methods , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Humans , Macromolecular Substances/metabolism , Pandemics , Proteins/genetics , Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Software , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
8.
PLoS Biol ; 18(8): e3000815, 2020 08.
Article in English | MEDLINE | ID: covidwho-712731

ABSTRACT

Two illustrations integrate current knowledge about severe acute respiratory syndrome (SARS) coronaviruses and their life cycle. They have been widely used in education and outreach through free distribution as part of a coronavirus-related resource at Protein Data Bank (PDB)-101, the education portal of the RCSB PDB. Scientific sources for creation of the illustrations and examples of dissemination and response are presented.


Subject(s)
Betacoronavirus/growth & development , Biomedical Research/education , Coronavirus Infections/prevention & control , Databases, Protein , Medicine in the Arts , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Animals , Betacoronavirus/physiology , Biomedical Research/methods , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Data Display , Humans , Information Dissemination/methods , Life Cycle Stages , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Respiratory Mucosa/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL