Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Front Immunol ; 13: 985478, 2022.
Article in English | MEDLINE | ID: covidwho-2080150

ABSTRACT

Currently, vaccines for SARS-CoV-2 and influenza viruses are updated if the new vaccine induces higher antibody-titers to circulating variants than current vaccines. This approach does not account for complex dynamics of how prior immunity skews recall responses to the updated vaccine. We: (i) use computational models to mechanistically dissect how prior immunity influences recall responses; (ii) explore how this affects the rules for evaluating and deploying updated vaccines; and (iii) apply this to SARS-CoV-2. Our analysis of existing data suggests that there is a strong benefit to updating the current SARS-CoV-2 vaccines to match the currently circulating variants. We propose a general two-dose strategy for determining if vaccines need updating as well as for vaccinating high-risk individuals. Finally, we directly validate our model by reanalysis of earlier human H5N1 influenza vaccine studies.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , SARS-CoV-2 , COVID-19 Vaccines , Influenza, Human/prevention & control , COVID-19/prevention & control
2.
Cell Rep Med ; 3(4): 100603, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-2004611

ABSTRACT

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic highlights the importance of determining the breadth and durability of humoral immunity to SARS-CoV-2 mRNA vaccination. Herein, we characterize the humoral response in 27 naive and 40 recovered vaccinees. SARS-CoV-2-specific antibody and memory B cell (MBC) responses are durable up to 6 months, although antibody half-lives are shorter for naive recipients. The magnitude of the humoral responses to vaccination strongly correlates with responses to initial SARS-CoV-2 infection. Neutralization titers are lower against SARS-CoV-2 variants in both recovered and naive vaccinees, with titers more reduced in naive recipients. While the receptor-binding domain (RBD) is the main neutralizing target of circulating antibodies, Moderna-vaccinated naives show a lesser reliance on RBDs, with >25% neutralization remaining after depletion of RBD-binding antibodies. Overall, we observe that vaccination induces higher peak titers and improves durability in recovered compared with naive vaccinees. These findings have broad implications for current vaccine strategies deployed against the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Vaccination
3.
Sci Transl Med ; 14(658): eabq4130, 2022 08 17.
Article in English | MEDLINE | ID: covidwho-1992934

ABSTRACT

Despite the remarkable efficacy of COVID-19 vaccines, waning immunity and the emergence of SARS-CoV-2 variants such as Omicron represents a global health challenge. Here, we present data from a study in nonhuman primates demonstrating durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine comprising the receptor binding domain of the ancestral strain (RBD-Wu) on the I53-50 nanoparticle adjuvanted with AS03, which was recently authorized for use in individuals 18 years or older. Vaccination induced neutralizing antibody (nAb) titers that were maintained at high concentrations for at least 1 year after two doses, with a pseudovirus nAb geometric mean titer (GMT) of 1978 and a live virus nAb GMT of 1331 against the ancestral strain but not against the Omicron BA.1 variant. However, a booster dose at 6 to 12 months with RBD-Wu or RBD-ß (RBD from the Beta variant) displayed on I53-50 elicited high neutralizing titers against the ancestral and Omicron variants. In addition, we observed persistent neutralization titers against a panel of sarbecoviruses, including SARS-CoV. Furthermore, there were substantial and persistent memory T and B cell responses reactive to Beta and Omicron variants. Vaccination resulted in protection against Omicron infection in the lung and suppression of viral burden in the nares at 6 weeks after the final booster immunization. Even at 6 months after vaccination, we observed protection in the lung and rapid control of virus in the nares. These results highlight the durable and cross-protective immunity elicited by the AS03-adjuvanted RBD-I53-50 nanoparticle vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccines, Subunit
4.
J Clin Oncol ; 40(33): 3808-3816, 2022 Nov 20.
Article in English | MEDLINE | ID: covidwho-1910387

ABSTRACT

PURPOSE: To examine COVID-19 mRNA vaccine-induced binding and neutralizing antibody responses in patients with non-small-cell lung cancer (NSCLC) to SARS-CoV-2 614D (wild type [WT]) strain and variants of concern after the primary 2-dose and booster vaccination. METHODS: Eighty-two patients with NSCLC and 53 healthy volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and neutralizing antibody responses were evaluated by Meso Scale Discovery assay and live virus Focus Reduction Neutralization Assay, respectively. RESULTS: A majority of patients with NSCLC generated binding and neutralizing antibody titers comparable with the healthy vaccinees after mRNA vaccination, but a subset of patients with NSCLC (25%) made poor responses, resulting in overall lower (six- to seven-fold) titers compared with the healthy cohort (P = < .0001). Although patients age > 70 years had lower immunoglobulin G titers (P = < .01), patients receiving programmed death-1 monotherapy, chemotherapy, or a combination of both did not have a significant impact on the antibody response. Neutralizing antibody titers to the B.1.617.2 (Delta), B.1.351 (Beta), and in particular, B.1.1.529 (Omicron) variants were significantly lower (P = < .0001) compared with the 614D (WT) strain. Booster vaccination led to a significant increase (P = .0001) in the binding and neutralizing antibody titers to the WT and Omicron variant. However, 2-4 months after the booster, we observed a five- to seven-fold decrease in neutralizing titers to WT and Omicron viruses. CONCLUSION: A subset of patients with NSCLC responded poorly to the SARS-CoV-2 mRNA vaccination and had low neutralizing antibodies to the B.1.1.529 Omicron variant. Booster vaccination increased binding and neutralizing antibody titers to Omicron, but antibody titers declined after 3 months. These data highlight the concern for patients with cancer given the rapid spread of SARS-CoV-2 Omicron variant.


Subject(s)
COVID-19 , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Aged , COVID-19 Vaccines , Antibody Formation , SARS-CoV-2 , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , COVID-19/prevention & control , Antibodies, Viral , Immunization , Vaccination , Antibodies, Neutralizing , RNA, Messenger
5.
J Clin Oncol ; 40(26): 3020-3031, 2022 09 10.
Article in English | MEDLINE | ID: covidwho-1879289

ABSTRACT

PURPOSE: Patients with non-Hodgkin lymphoma including chronic lymphocytic leukemia (NHL/CLL) are at higher risk of severe SARS-CoV-2 infection. We investigated vaccine-induced antibody responses in patients with NHL/CLL against the original SARS-CoV-2 strain and variants of concern including B.1.167.2 (Delta) and B.1.1.529 (Omicron). MATERIALS AND METHODS: Blood from 121 patients with NHL/CLL receiving two doses of vaccine were collected longitudinally. Antibody binding against the full-length spike protein, the receptor-binding, and N-terminal domains of the original strain and of variants was measured using a multiplex assay. Live-virus neutralization against Delta, Omicron, and the early WA1/2020 strains was measured using a focus reduction neutralization test. B cells were measured by flow cytometry. Correlation between vaccine response and clinical factors was determined. RESULTS: Mean anti-SARS-CoV-2 spike immunoglobulin G-binding titers were 85-fold lower in patients with NHL/CLL compared with healthy controls, with seroconversion occurring in only 67% of patients. Neutralization titers were also lower and correlated with binding titers (P < .0001). Treatment with anti-CD20-directed therapies within 1 year resulted in 136-fold lower binding titers. Peripheral blood B-cell count also correlated with vaccine response. At 3 months from last anti-CD20-directed therapy, B-cell count ≥ 4.31/µL blood around the time of vaccination predicted response (OR 7.46, P = .04). Antibody responses also correlated with age. Importantly, neutralization titers against Delta and Omicron were reduced six- and 42-fold, respectively, with 67% of patients seropositive for WA1/2020 exhibiting seronegativity for Omicron. CONCLUSION: Antibody binding and live-virus neutralization against SARS-CoV-2 and its variants of concern including Delta and Omicron were substantially lower in patients with NHL/CLL compared with healthy vaccinees. Anti-CD20-directed therapy < 1 year before vaccination and number of circulating B cells strongly predict vaccine response.


Subject(s)
COVID-19 , Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Non-Hodgkin , Vaccines , COVID-19/prevention & control , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Lymphoma, Non-Hodgkin/therapy , SARS-CoV-2 , Vaccines, Synthetic , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , mRNA Vaccines
6.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337036

ABSTRACT

When should vaccines to evolving pathogens such as SARS-CoV-2 be updated? Our computational models address this focusing on updating SARS-CoV-2 vaccines to the currently circulating Omicron variant. Current studies typically compare the antibody titers to the new variant following a single dose of the original-vaccine versus the updated-vaccine in previously immunized individuals. These studies find that the updated-vaccine does not induce higher titers to the vaccine-variant compared with the original-vaccine, suggesting that updating may not be needed. Our models recapitulate this observation but suggest that vaccination with the updated-vaccine generates qualitatively different humoral immunity, a small fraction of which is specific for unique epitopes to the new variant. Our simulations suggest that these new variant-specific responses could dominate following subsequent vaccination or infection with either the currently circulating or future variants. We suggest a two-dose strategy for determining if the vaccine needs updating and for vaccinating high-risk individuals.

7.
J Virol ; 96(9): e0002622, 2022 05 11.
Article in English | MEDLINE | ID: covidwho-1784768

ABSTRACT

Humoral immunity is a major component of the adaptive immune response against viruses and other pathogens with pathogen-specific antibody acting as the first line of defense against infection. Virus-specific antibody levels are maintained by continual secretion of antibody by plasma cells residing in the bone marrow. This raises the important question of how the virus-specific plasma cell population is stably maintained and whether memory B cells are required to replenish plasma cells, balancing their loss arising from their intrinsic death rate. In this study, we examined the longevity of virus-specific antibody responses in the serum of mice following acute viral infection with three different viruses: lymphocytic choriomeningitis virus (LCMV), influenza virus, and vesicular stomatitis virus (VSV). To investigate the contribution of memory B cells to the maintenance of virus-specific antibody levels, we employed human CD20 transgenic mice, which allow for the efficient depletion of B cells with rituximab, a human CD20-specific monoclonal antibody. Mice that had resolved an acute infection with LCMV, influenza virus, or VSV were treated with rituximab starting at 2 months after infection, and the treatment was continued for up to a year postinfection. This treatment regimen with rituximab resulted in efficient depletion of B cells (>95%), with virus-specific memory B cells being undetectable. There was an early transient drop in the antibody levels after rituximab treatment followed by a plateauing of the curve with virus-specific antibody levels remaining relatively stable (half-life of 372 days) for up to a year after infection in the absence of memory B cells. The number of virus-specific plasma cells in the bone marrow were consistent with the changes seen in serum antibody levels. Overall, our data show that virus-specific plasma cells in the bone marrow are intrinsically long-lived and can maintain serum antibody titers for extended periods of time without requiring significant replenishment from memory B cells. These results provide insight into plasma cell longevity and have implications for B cell depletion regimens in cancer and autoimmune patients in the context of vaccination in general and especially for COVID-19 vaccines. IMPORTANCE Following vaccination or primary virus infection, virus-specific antibodies provide the first line of defense against reinfection. Plasma cells residing in the bone marrow constitutively secrete antibodies, are long-lived, and can thus maintain serum antibody levels over extended periods of time in the absence of antigen. Our data, in the murine model system, show that virus-specific plasma cells are intrinsically long-lived but that some reseeding by memory B cells might occur. Our findings demonstrate that, due to the longevity of plasma cells, virus-specific antibody levels remain relatively stable in the absence of memory B cells and have implications for vaccination.


Subject(s)
Antibodies, Viral , Lymphocytic Choriomeningitis , Memory B Cells , Rituximab , Animals , Antibodies, Viral/blood , Humans , Immunity, Humoral , Immunologic Memory , Lymphocytic Choriomeningitis/immunology , Memory B Cells/cytology , Mice , Mice, Transgenic , Orthomyxoviridae Infections/immunology , Plasma Cells/cytology , Rhabdoviridae Infections/immunology , Rituximab/pharmacology
8.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330741

ABSTRACT

Despite the remarkable efficacy of COVID-19 vaccines, waning immunity, and the emergence of SARS-CoV-2 variants such as Omicron represents a major global health challenge. Here we present data from a study in non-human primates demonstrating durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine, consisting of RBD (receptor binding domain) on the I53-50 nanoparticle, adjuvanted with AS03, currently in Phase 3 clinical trial ( NCT05007951 ). Vaccination induced robust neutralizing antibody (nAb) titers that were maintained at high levels for at least one year after two doses (Pseudovirus nAb GMT: 2207, Live-virus nAb GMT: 1964) against the ancestral strain, but not against Omicron. However, a booster dose at 6-12 months with RBD-Wu or RBD-B (RBD from the Beta variant) displayed on I53-50 elicited equivalent and remarkably high neutralizing titers against the ancestral as well as the Omicron variant. Furthermore, there were substantial and persistent memory T and B cell responses reactive to Beta and Omicron variants. Importantly, vaccination resulted in protection against Omicron infection in the lung (no detectable virus in any animal) and profound suppression of viral burden in the nares (median peak viral load of 7567 as opposed to 1.3x107 copies in unvaccinated animals) at 6 weeks post final booster. Even at 6 months post vaccination, there was significant protection in the lung (with 7 out of 11 animals showing no viral load, 3 out of 11 animals showing ~20-fold lower viral load than unvaccinated controls) and rapid control of virus in the nares. These results highlight the durable cross-protective immunity elicited by the AS03-adjuvanted RBD-I53-50 nanoparticle vaccine platform.

9.
Cell Host Microbe ; 30(1): 83-96.e4, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1634725

ABSTRACT

SARS-CoV-2 infection causes diverse outcomes ranging from asymptomatic infection to respiratory distress and death. A major unresolved question is whether prior immunity to endemic, human common cold coronaviruses (hCCCoVs) impacts susceptibility to SARS-CoV-2 infection or immunity following infection and vaccination. Therefore, we analyzed samples from the same individuals before and after SARS-CoV-2 infection or vaccination. We found hCCCoV antibody levels increase after SARS-CoV-2 exposure, demonstrating cross-reactivity. However, a case-control study indicates that baseline hCCCoV antibody levels are not associated with protection against SARS-CoV-2 infection. Rather, higher magnitudes of pre-existing betacoronavirus antibodies correlate with more SARS-CoV-2 antibodies following infection, an indicator of greater disease severity. Additionally, immunization with hCCCoV spike proteins before SARS-CoV-2 immunization impedes the generation of SARS-CoV-2-neutralizing antibodies in mice. Together, these data suggest that pre-existing hCCCoV antibodies hinder SARS-CoV-2 antibody-based immunity following infection and provide insight on how pre-existing coronavirus immunity impacts SARS-CoV-2 infection, which is critical considering emerging variants.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , Common Cold/immunology , Immunity, Humoral/immunology , SARS-CoV-2/immunology , Animals , Asymptomatic Infections , COVID-19/virology , Case-Control Studies , Cell Line , Common Cold/virology , Cross Reactions/immunology , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Spike Glycoprotein, Coronavirus/immunology
11.
Cell host & microbe ; 2021.
Article in English | EuropePMC | ID: covidwho-1564429

ABSTRACT

A major unresolved question is whether prior immunity to endemic, human common cold coronaviruses (hCCCoV) impacts susceptibility to SARS-CoV-2 infection. Lin et al. analyze hCCCoV antibodies in the same individuals before and after SARS-CoV-2 infection, finding pre-existing betacoronavirus antibodies may hinder SARS-CoV-2 effective immunity following infection.

12.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296251

ABSTRACT

Transmission models for infectious diseases are typically formulated in terms of dynamics between individuals or groups with processes such as disease progression or recovery for each individual captured phenomenologically, without reference to underlying biological processes. Furthermore, the construction of these models is often monolithic: they don't allow one to readily modify the processes involved or include the new ones, or to combine models at different scales. We show how to construct a simple model of immune response to a respiratory virus and a model of transmission using an easily modifiable set of rules allowing further refining and merging the two models together. The immune response model reproduces the expected response curve of PCR testing for COVID-19 and implies a long-tailed distribution of infectiousness reflective of individual heterogeneity. This immune response model, when combined with a transmission model, reproduces the previously reported shift in the population distribution of viral loads along an epidemic trajectory.

13.
Curr Opin Virol ; 50: 103-109, 2021 10.
Article in English | MEDLINE | ID: covidwho-1370468

ABSTRACT

The COVID-19 pandemic has highlighted a need for improved frameworks for drug discovery, repurposing, clinical trial design and therapy optimization and personalization. Mechanistic computational models can play an important role in developing these frameworks. We discuss how mechanistic models, which consider viral entry, replication in target cells, viral spread in the body, immune response, and the complex factors involved in tissue and organ damage and recovery, can clarify the mechanisms of humoral and cellular immune responses to the virus, viral distribution and replication in tissues, the origins of pathogenesis and patient-to-patient heterogeneity in responses. These models are already improving our understanding of the mechanisms of action of antivirals and immune modulators. We discuss how closer collaboration between the experimentalists, clinicians and modelers could result in more predictive models which may guide therapies for viral infections, improving survival and leading to faster and more complete recovery.


Subject(s)
COVID-19/drug therapy , Computer Simulation , SARS-CoV-2 , COVID-19/immunology , Humans , Hydrodynamics , Intersectoral Collaboration
14.
Cell Rep Med ; 2(7): 100354, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1294297

ABSTRACT

Ending the COVID-19 pandemic will require long-lived immunity to SARS-CoV-2. Here, we evaluate 254 COVID-19 patients longitudinally up to 8 months and find durable broad-based immune responses. SARS-CoV-2 spike binding and neutralizing antibodies exhibit a bi-phasic decay with an extended half-life of >200 days suggesting the generation of longer-lived plasma cells. SARS-CoV-2 infection also boosts antibody titers to SARS-CoV-1 and common betacoronaviruses. In addition, spike-specific IgG+ memory B cells persist, which bodes well for a rapid antibody response upon virus re-exposure or vaccination. Virus-specific CD4+ and CD8+ T cells are polyfunctional and maintained with an estimated half-life of 200 days. Interestingly, CD4+ T cell responses equally target several SARS-CoV-2 proteins, whereas the CD8+ T cell responses preferentially target the nucleoprotein, highlighting the potential importance of including the nucleoprotein in future vaccines. Taken together, these results suggest that broad and effective immunity may persist long-term in recovered COVID-19 patients.


Subject(s)
Antibodies, Viral/blood , Antibody Formation , COVID-19/immunology , Immunologic Memory , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Longitudinal Studies , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL