Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Infectious Medicine ; 2022.
Article in English | ScienceDirect | ID: covidwho-1699253

ABSTRACT

Objective Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 and has led to a global coronavirus disease 2019 (COVID-19) pandemic. Currently, incomplete understanding of how SARS-CoV-2 arrogates the host cell to establish its life cycle has led to slow progress in the development of effective drugs. Results In this study, we found that SARS-CoV-2 hijacks the host protein EWSR1 (Ewing Sarcoma breakpoint region 1/EWS RNA binding protein 1) to promote the activity of its helicase NSP13 to facilitate viral propagation. NSP13 is highly conserved among coronaviruses and is crucial for virus replication, providing chemical energy to unwind viral RNA replication intermediates. Treatment with different SARS-CoV-2 NSP13 inhibitors in multiple cell lines infected with SARS-CoV-2 effectively suppressed SARS-CoV-2 infection. Using affinity-purification mass spectrometry, the RNA binding protein EWSR1 was then identified as a potent host factor that physically associated with NSP13. Furthermore, silencing EWSR1 dramatically reduced virus replication at both viral RNA and protein levels. Mechanistically, EWSR1 was found to bind to the NTPase domain of NSP13 and potentially enhance its dsRNA unwinding ability. Conclusion In conclusion, our results pinpoint EWSR1 as a novel host factor for NSP13 that could potentially be used for drug repurposing as a therapeutic target for COVID-19.

2.
J Immunol ; 208(3): 753-761, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1614089

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has seriously threatened global public health. Severe COVID-19 has been reported to be associated with an impaired IFN response. However, the mechanisms of how SARS-CoV-2 antagonizes the host IFN response are poorly understood. In this study, we report that SARS-CoV-2 helicase NSP13 inhibits type I IFN production by directly targeting TANK-binding kinase 1 (TBK1) for degradation. Interestingly, inhibition of autophagy by genetic knockout of Beclin1 or pharmacological inhibition can rescue NSP13-mediated TBK1 degradation in HEK-293T cells. Subsequent studies revealed that NSP13 recruits TBK1 to p62, and the absence of p62 can also inhibit TBK1 degradation in HEK-293T and HeLa cells. Finally, TBK1 and p62 degradation and p62 aggregation were observed during SARS-CoV-2 infection in HeLa-ACE2 and Calu3 cells. Overall, our study shows that NSP13 inhibits type I IFN production by recruiting TBK1 to p62 for autophagic degradation, enabling it to evade the host innate immune response, which provides new insights into the transmission and pathogenesis of SARS-CoV-2 infection.


Subject(s)
Autophagy , COVID-19/immunology , Coronavirus RNA-Dependent RNA Polymerase/physiology , Interferon Type I/biosynthesis , Methyltransferases/physiology , Protein Serine-Threonine Kinases/metabolism , RNA Helicases/physiology , SARS-CoV-2/physiology , Sequestosome-1 Protein/metabolism , Viral Nonstructural Proteins/physiology , Beclin-1/antagonists & inhibitors , Cell Line , Down-Regulation , Humans , Immune Evasion , Immunity, Innate , Immunoprecipitation , Interferon Type I/genetics , Multiprotein Complexes , Protein Aggregates , Protein Interaction Mapping
SELECTION OF CITATIONS
SEARCH DETAIL