Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: covidwho-2200326


HSV-1 is a typical neurotropic virus that infects the brain and causes keratitis, cold sores, and occasionally, acute herpes simplex encephalitis (HSE). The large amount of proinflammatory cytokines induced by HSV-1 infection is an important cause of neurotoxicity in the central nervous system (CNS). Microglia, as resident macrophages in CNS, are the first line of defense against neurotropic virus infection. Inhibiting the excessive production of inflammatory cytokines in overactivated microglia is a crucial strategy for the treatment of HSE. In the present study, we investigated the effect of nicotinamide n-oxide (NAMO), a metabolite mainly produced by gut microbe, on HSV-1-induced microglial inflammation and HSE. We found that NAMO significantly inhibits the production of cytokines induced by HSV-1 infection of microglia, such as IL-1ß, IL-6, and TNF-α. In addition, NAMO promotes the transition of microglia from the pro-inflammatory M1 type to the anti-inflammatory M2 type. More detailed studies revealed that NAMO enhances the expression of Sirtuin-1 and its deacetylase enzymatic activity, which in turn deacetylates the p65 subunit to inhibit NF-κB signaling, resulting in reduced inflammatory response and ameliorated HSE pathology. Therefore, Sirtuin-1/NF-κB axis may be promising therapeutic targets against HSV-1 infection-related diseases including HSE.

Herpes Simplex , Herpesvirus 1, Human , Humans , NF-kappa B/metabolism , Microglia/metabolism , Herpesvirus 1, Human/metabolism , Sirtuin 1/metabolism , Inflammation/metabolism , Cytokines/metabolism , Herpes Simplex/pathology
Int J Med Sci ; 17(11): 1522-1531, 2020.
Article in English | MEDLINE | ID: covidwho-647086


The outbreak of pneumonia caused by SARS-CoV-2 posed a great threat to global human health, which urgently requires us to understand comprehensively the mechanism of SARS-CoV-2 infection. Angiotensin-converting enzyme 2 (ACE2) was identified as a functional receptor for SARS-CoV-2, distribution of which may indicate the risk of different human organs vulnerable to SARS-CoV-2 infection. Previous studies investigating the distribution of ACE2 mRNA in human tissues only involved a limited size of the samples and a lack of determination for ACE2 protein. Given the heterogeneity among humans, the datasets covering more tissues with a larger size of samples should be analyzed. Indeed, ACE2 is a membrane and secreted protein, while the expression of ACE2 in blood and common blood cells remains unknown. Herein, the proteomic data in HIPED and the antibody-based immunochemistry result in HPA were collected to analyze the distribution of ACE2 protein in human tissues. The bulk RNA-seq profiles from three separate public datasets including HPA tissue Atlas, GTEx, and FANTOM5 CAGE were also obtained to determine the expression of ACE2 in human tissues. Moreover, the abundance of ACE2 in human blood and blood cells was determined by analyzing the data in the PeptideAtlas and the HPA Blood Atlas. We found that the mRNA expression cannot reflect the abundance of ACE2 factor due to the strong differences between mRNA and protein quantities of ACE2 within and across tissues. Our results suggested that ACE2 protein is mainly expressed in the small intestine, kidney, gallbladder, and testis, while the abundance of which in brain-associated tissues and blood common cells is low. HIPED revealed enrichment of ACE2 protein in the placenta and ovary despite a low mRNA level. Further, human secretome shows that the average concentration of ACE2 protein in the plasma of males is higher than those in females. Our research will be beneficial for understanding the transmission routes and sex-based differences in susceptibility of SARS-CoV-2 infection.

Coronavirus Infections/metabolism , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Receptors, Virus/metabolism , Angiotensin-Converting Enzyme 2 , Betacoronavirus , COVID-19 , Databases, Protein , Female , Humans , Immunohistochemistry , Male , Mass Spectrometry , Pandemics , Proteomics , RNA, Messenger/metabolism , RNA-Seq , SARS-CoV-2 , Tissue Distribution , Transcriptome