Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
2.
Sports Med Health Sci ; 2021 Dec 25.
Article in English | MEDLINE | ID: covidwho-1586495

ABSTRACT

Under the condition of normalized epidemic, how athletes train and compete well has been in the spotlight. This article reported the symptom, hospitalization and training situation of seven confirmed cases of coronavirus-disease-2019 (COVID-19) among Chinese national teams. Moreover, the paper summarized the experience of Chinese national teams in terms of epidemic prevention and control, treatment of infection, and safe return to play. Through a scientific combination of medication and non-medical treatment, seven athletes were all discharged from the hospital. These discharged athletes underwent strict isolation and scientific training before returning to sports teams. Before returning to play, continuous monitoring of physical and mental condition was required. All seven athletes returned to play safely and performed excellently. As for hosting large-scale sporting events, the entire enclosed-loop management from immigration to competition was proposed in this paper. This study could serve as a standard of epidemic prevention and control, treatment for infection and safe return to play during competition and training around the world.

3.
Gastroenterology ; 2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1475507

ABSTRACT

BACKGROUND AND AIMS: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with altered gut microbiota composition. Phylogenetic groups of gut bacteria involved in the metabolism of short chain fatty acids (SCFAs) were depleted in SARS-CoV-2-infected patients. We aimed to characterize a functional profile of the gut microbiome in patients with COVID-19 before and after disease resolution. METHODS: We performed shotgun metagenomic sequencing on fecal samples from 66 antibiotics-naïve patients with COVID-19 and 70 non-COVID-19 controls. Serial fecal samples were collected (at up to 6 times points) during hospitalization and beyond 1 month after discharge. We assessed gut microbial pathways in association with disease severity and blood inflammatory markers. We also determined changes of microbial functions in fecal samples before and after disease resolution and validated these functions using targeted analysis of fecal metabolites. RESULTS: Compared with non-COVID-19 controls, patients with COVID-19 with severe/critical illness showed significant alterations in gut microbiome functionality (P < .001), characterized by impaired capacity of gut microbiome for SCFA and L-isoleucine biosynthesis and enhanced capacity for urea production. Impaired SCFA and L-isoleucine biosynthesis in gut microbiome persisted beyond 30 days after recovery in patients with COVID-19. Targeted analysis of fecal metabolites showed significantly lower fecal concentrations of SCFAs and L-isoleucine in patients with COVID-19 before and after disease resolution. Lack of SCFA and L-isoleucine biosynthesis significantly correlated with disease severity and increased plasma concentrations of CXCL-10, NT- proB-type natriuretic peptide, and C-reactive protein (all P < .05). CONCLUSIONS: Gut microbiome of patients with COVID-19 displayed impaired capacity for SCFA and L-isoleucine biosynthesis that persisted even after disease resolution. These 2 microbial functions correlated with host immune response underscoring the importance of gut microbial functions in SARS-CoV-2 infection pathogenesis and outcome.

4.
Front Public Health ; 9: 709056, 2021.
Article in English | MEDLINE | ID: covidwho-1365588

ABSTRACT

Background: The coronavirus pneumonia is still spreading around the world. Much progress has been made in vaccine development, and vaccination will become an inevitable trend in the fight against this pandemic. However, the public acceptance of COVID-19 vaccination still remains uncertain. Methods: An anonymous questionnaire was used in Wen Juan Xing survey platform. All the respondents were divided into healthcare workers and non-healthcare workers. Multinomial logistic regression analyses were performed to identify the key sociodemographic, cognitive, and attitude associations among the samples of healthcare workers and non-healthcare workers. Results: A total of 2,580 respondents completed the questionnaire, including 1,329 healthcare workers and 1,251 non-healthcare workers. This study showed that 76.98% of healthcare workers accepted the COVID-19 vaccine, 18.28% workers were hesitant, and 4.74% workers were resistant. Among the non-healthcare workers, 56.19% workers received the COVID-19 vaccine, 37.57% workers were hesitant, and 6.24% workers were resistant. Among the healthcare workers, compared with vaccine recipients, vaccine-hesitant individuals were more likely to be female (AOR = 1.52, 95% CI: 1.12-2.07); vaccine-resistant individuals were more likely to live in the suburbs (AOR = 2.81, 95% CI: 1.44-3.99) with an income of 10,000 RMB or greater (AOR = 2.00, 95% CI: 1.03-3.90). Among the non-healthcare workers, vaccine-hesitant individuals were more likely to be female (AOR = 1.66, 95% CI: 1.31-2.11); vaccine-resistant individuals were also more likely to be female (AOR = 1.87, 95% CI: 1.16-3.02) and older than 65 years (AOR = 4.96, 95% CI: 1.40-7.62). There are great differences between healthcare workers and non-healthcare workers in their cognition and attitude toward vaccines. Conclusions: Our study shows that healthcare workers are more willing to be vaccinated than non-healthcare workers. Current vaccine safety issues continue to be a major factor affecting public acceptance, and to expand vaccine coverage in response to the COVID-19 pandemic, appropriate vaccination strategies and immunization programs are essential, especially for non-healthcare workers.


Subject(s)
COVID-19 Vaccines , COVID-19 , China/epidemiology , Cross-Sectional Studies , Female , Health Personnel , Humans , Male , Pandemics , SARS-CoV-2 , Surveys and Questionnaires , Vaccination
5.
Risk Manag Healthc Policy ; 14: 2369-2375, 2021.
Article in English | MEDLINE | ID: covidwho-1278279

ABSTRACT

Background: Many people have experienced novel coronavirus pneumonia since the beginning of the COVID-19 pandemic in Wuhan, China. The Chinese government has encouraged people to wear face masks in public places; however, due to the large population, there may be a series of problems related to this recommendation, including shortages of masks and lack of an optimal disposal method for used masks. Objective: The purpose of this study is to understand the current status of mask shortages and used masks in China. Methods: A questionnaire survey was designed to assess the current status of mask shortages and used masks. The differences among groups were analyzed with chi-square tests. Results: The constituent ratio of those who reuse masks was 61%. Obtaining masks from the drugstore was reported to be very difficult due to high demand and short supply, and approximately 1/3 of the respondents purchased expensive masks. Most people know how to properly handle used masks, and only 7% of them casually discard masks. However, 50% of respondents have seen others throw away used masks at will. A further subgroup analysis showed that respondents in Central China tended to use masks repeatedly, as did medical personnel. Females, people living in the central region, and medical personnel may find it more difficult to purchase masks in drugstores. Non-medical personnel may be more likely to buy expensive masks. Females, people living in the western region, and medical personnel may be more likely to know how to properly handle used masks and not to discard used masks at will. Medical personnel may be more likely to observe others discarding used masks at will. Conclusion: In response to COVID-19, the public should be encouraged to use face masks and are advised not to reuse or throw away masks at will due to safety concerns.

6.
Int J Biol Sci ; 17(8): 1925-1939, 2021.
Article in English | MEDLINE | ID: covidwho-1266906

ABSTRACT

Background: Angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) allow entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells and play essential roles in cancer therapy. However, the functions of ACE2 and TMPRSS2 in kidney cancer remain unclear, especially as kidneys are targets for SARS-CoV-2 infection. Methods: UCSC Xena project, the Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) databases (GSE30589 and GSE59185) were searched for gene expression in human tissues, gene expression data, and clinical information. Several bioinformatics methods were utilized to analyze the correlation between ACE2 and TMPRSS2 with respect to the prognosis of kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP). Results: ACE2 expression was significantly upregulated in tumor tissue, while its downregulation was associated with low survival in KIRC and KIRP patients. TMPRSS2 was downregulated in KIRC and KIRP, and its expression was not correlated with patient survival. According to clinical risk factor-based prediction models, ACE2 exhibits predictive accuracy for kidney cancer prognosis and is correlated with metabolism and immune infiltration. In an animal model, ACE2 expression was remarkably downregulated in SARS-CoV-2-infected cells compared to in the control. Conclusion: ACE2 expression is highly correlated with various metabolic pathways and is involved in immune infiltration.it plays a crucial role than TMPRSS2 in diagnosing and prognosis of kidney cancer patients. The overlap in ACE2 expression between kidney cancer and SARS-CoV-2 infection suggests that patients with KIRC or KIRP are at high risk of developing serious symptoms.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19/complications , Carcinoma, Renal Cell/complications , Kidney Neoplasms/complications , Receptors, Virus/biosynthesis , SARS-CoV-2 , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , Animals , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/mortality , Chlorocebus aethiops , Down-Regulation , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Kaplan-Meier Estimate , Kidney Neoplasms/immunology , Kidney Neoplasms/metabolism , Kidney Neoplasms/mortality , Lymphocytes, Tumor-Infiltrating/immunology , Male , Middle Aged , Models, Animal , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Organ Specificity , Prognosis , Proportional Hazards Models , Receptors, Virus/genetics , Renin-Angiotensin System/physiology , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics , Serine Endopeptidases/physiology , Tissue Array Analysis , Vero Cells
7.
Ir J Med Sci ; 2021 May 21.
Article in English | MEDLINE | ID: covidwho-1237551

ABSTRACT

AIMS: We aimed to evaluate the impact of the COVID-19 epidemic on emergency and cardiovascular disease-related calls in Hangzhou, China. METHODS: We conducted a single-center retrospective study, collecting data on emergency calls to the Hangzhou Emergency Center (HEC) during the COVID-19 epidemic (January 20, 2020, to March 15, 2020). Data were compared with the same period in 2019. RESULTS: Compared to 2019, the number of emergency calls has dropped by 21.63%, ambulance calls by 29.02%, rescue calls by 22.57%, and cardiovascular disease-related emergency calls by 32.86%. The numbers of emergency, ambulance, and rescue calls in 2020 were significantly lower than in 2019. CONCLUSIONS: During the COVID-19 epidemic in Hangzhou, the numbers of emergency and cardiovascular disease-related calls have decreased significantly. These results point to a severe social problem that requires the attention of the medical community and the government.

8.
Microbiome ; 9(1): 91, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1183579

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by the enveloped RNA virus SARS-CoV-2 primarily affects the respiratory and gastrointestinal tracts. SARS-CoV-2 was isolated from fecal samples, and active viral replication was reported in human intestinal cells. The human gut also harbors an enormous amount of resident viruses (collectively known as the virome) that play a role in regulating host immunity and disease pathophysiology. Understanding gut virome perturbation that underlies SARS-CoV-2 infection and severity is an unmet need. METHODS: We enrolled 98 COVID-19 patients with varying disease severity (3 asymptomatic, 53 mild, 34 moderate, 5 severe, 3 critical) and 78 non-COVID-19 controls matched for gender and co-morbidities. All subjects had fecal specimens sampled at inclusion. Blood specimens were collected for COVID-19 patients at admission to test for inflammatory markers and white cell counts. Among COVID-19 cases, 37 (38%) patients had serial fecal samples collected 2 to 3 times per week from time of hospitalization until after discharge. Using shotgun metagenomics sequencing, we sequenced and profiled the fecal RNA and DNA virome. We investigated alterations and longitudinal dynamics of the gut virome in association with disease severity and blood parameters. RESULTS: Patients with COVID-19 showed underrepresentation of Pepper mild mottle virus (RNA virus) and multiple bacteriophage lineages (DNA viruses) and enrichment of environment-derived eukaryotic DNA viruses in fecal samples, compared to non-COVID-19 subjects. Such gut virome alterations persisted up to 30 days after disease resolution. Fecal virome in SARS-CoV-2 infection harbored more stress-, inflammation-, and virulence-associated gene encoding capacities including those pertaining to bacteriophage integration, DNA repair, and metabolism and virulence associated with their bacterial host. Baseline fecal abundance of 10 virus species (1 RNA virus, pepper chlorotic spot virus, and 9 DNA virus species) inversely correlated with disease COVID-19 severity. These viruses inversely correlated with blood levels of pro-inflammatory proteins, white cells, and neutrophils. Among the 10 COVID-19 severity-associated DNA virus species, 4 showed inverse correlation with age; 5 showed persistent lower abundance both during disease course and after disease resolution relative to non-COVID-19 subjects. CONCLUSIONS: Both enteric RNA and DNA virome in COVID-19 patients were different from non-COVID-19 subjects, which persisted after disease resolution of COVID-19. Gut virome may calibrate host immunity and regulate severity to SARS-CoV-2 infection. Our observation that gut viruses inversely correlated with both severity of COVID-19 and host age may partly explain that older subjects are prone to severe and worse COVID-19 outcomes. Altogether, our data highlight the importance of human gut virome in severity and potentially therapeutics of COVID-19. Video Abstract.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Child, Preschool , DNA , Gastrointestinal Microbiome/genetics , Humans , RNA , SARS-CoV-2 , Virome
13.
Am J Emerg Med ; 44: 192-197, 2021 06.
Article in English | MEDLINE | ID: covidwho-773909

ABSTRACT

OBJECTIVE: To explore the effect of COVID-19 outbreak on the treatment time of patients with ST-segment elevation myocardial infarction (STEMI) in Hangzhou, China. METHODS: We retrospectively reviewed the data of STEMI patients admitted to the Hangzhou Chest Pain Center (CPC) during a COVID-19 epidemic period in 2020 (24 cases) and the same period in 2019 (29 cases). General characteristics of the patients were recorded, analyzed, and compared. Moreover, we compared the groups for the time from symptom onset to the first medical contact (SO-to-FMC), time from first medical contact to balloon expansion (FMC-to-B), time from hospital door entry to first balloon expansion (D-to-B), and catheter room activation time. The groups were also compared for postoperative cardiac color Doppler ultrasonographic left ventricular ejection fraction (LVEF),the incidence of major adverse cardiovascular and cerebrovascular events (MACCE),Kaplan-Meier survival curves during the 28 days after the operation. RESULTS: The times of SO-to-FMC, D-to-B, and catheter room activation in the 2020 group were significantly longer than those in the 2019 group (P < 0.05). The cumulative mortality after the surgery in the 2020 group was significantly higher than the 2019 group (P < 0.05). CONCLUSION: The pre-hospital and in-hospital treatment times of STEMI patients during the COVID-19 epidemic were longer than those before the epidemic. Cumulative mortality was showed in Kaplan-Meier survival curves after the surgery in the 2020 group was significantly different higher than the 2019 group during the 28 days.The diagnosis and treatment process of STEMI patients during an epidemic should be optimized to improve their prognosis.


Subject(s)
COVID-19/complications , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction/therapy , Time-to-Treatment/statistics & numerical data , Acute Disease , China , Echocardiography, Doppler, Color , Humans , Prognosis , Retrospective Studies , ST Elevation Myocardial Infarction/mortality , Stroke Volume , Survival Analysis , Time Factors , Ventricular Function, Left
15.
Gastroenterology ; 159(4): 1302-1310.e5, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-621434

ABSTRACT

BACKGROUND & AIMS: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects intestinal cells, and might affect the intestinal microbiota. We investigated changes in the fecal fungal microbiomes (mycobiome) of patients with SARS-CoV-2 infection during hospitalization and on recovery. METHODS: We performed deep shotgun metagenomic sequencing analysis of fecal samples from 30 patients with coronavirus disease 2019 (COVID-19) in Hong Kong, from February 5 through May 12, 2020. Fecal samples were collected 2 to 3 times per week from time of hospitalization until discharge. We compared fecal mycobiome compositions of patients with COVID-19 with those from 9 subjects with community-acquired pneumonia and 30 healthy individuals (controls). We assessed fecal mycobiome profiles throughout time of hospitalization until clearance of SARS-CoV-2 from nasopharyngeal samples. RESULTS: Patients with COVID-19 had significant alterations in their fecal mycobiomes compared with controls, characterized by enrichment of Candia albicans and a highly heterogeneous mycobiome configuration, at time of hospitalization. Although fecal mycobiomes of 22 patients with COVID-19 did not differ significantly from those of controls during times of hospitalization, 8 of 30 patients with COVID-19 had continued significant differences in fecal mycobiome composition, through the last sample collected. The diversity of the fecal mycobiome of the last sample collected from patients with COVID-19 was 2.5-fold higher than that of controls (P < .05). Samples collected at all timepoints from patients with COVID-19 had increased proportions of opportunistic fungal pathogens, Candida albicans, Candida auris, and Aspergillus flavus compared with controls. Two respiratory-associated fungal pathogens, A. flavus and Aspergillus niger, were detected in fecal samples from a subset of patients with COVID-19, even after clearance of SARS-CoV-2 from nasopharyngeal samples and resolution of respiratory symptoms. CONCLUSIONS: In a pilot study, we found heterogeneous configurations of the fecal mycobiome, with enrichment of fungal pathogens from the genera Candida and Aspergillus, during hospitalization of 30 patients with COVID-19 compared with controls. Unstable gut mycobiomes and prolonged dysbiosis persisted in a subset of patients with COVID-19 up to 12 days after nasopharyngeal clearance of SARS-CoV-2. Studies are needed to determine whether alterations in intestinal fungi contribute to or result from SARS-CoV-2 infection, and the effects of these changes in disease progression.


Subject(s)
Coronavirus Infections/microbiology , Feces/microbiology , Fungi/isolation & purification , Gastrointestinal Microbiome , Mycobiome , Pneumonia, Viral/microbiology , Adult , Aged , Aspergillus flavus/genetics , Aspergillus flavus/isolation & purification , Aspergillus niger/genetics , Aspergillus niger/isolation & purification , Betacoronavirus , COVID-19 , Candida/genetics , Candida/isolation & purification , Candida albicans/genetics , Candida albicans/isolation & purification , Case-Control Studies , Community-Acquired Infections/microbiology , DNA, Fungal/analysis , Female , Fungi/genetics , Humans , Male , Metagenomics , Middle Aged , Nasopharynx/virology , Pandemics , Patient Discharge , Pneumonia/microbiology , SARS-CoV-2 , Time Factors , Young Adult
16.
Gastroenterology ; 159(3): 944-955.e8, 2020 09.
Article in English | MEDLINE | ID: covidwho-324569

ABSTRACT

BACKGROUND & AIMS: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects gastrointestinal tissues, little is known about the roles of gut commensal microbes in susceptibility to and severity of infection. We investigated changes in fecal microbiomes of patients with SARS-CoV-2 infection during hospitalization and associations with severity and fecal shedding of virus. METHODS: We performed shotgun metagenomic sequencing analyses of fecal samples from 15 patients with Coronavirus Disease 2019 (COVID-19) in Hong Kong, from February 5 through March 17, 2020. Fecal samples were collected 2 or 3 times per week from time of hospitalization until discharge; disease was categorized as mild (no radiographic evidence of pneumonia), moderate (pneumonia was present), severe (respiratory rate ≥30/min, or oxygen saturation ≤93% when breathing ambient air), or critical (respiratory failure requiring mechanical ventilation, shock, or organ failure requiring intensive care). We compared microbiome data with those from 6 subjects with community-acquired pneumonia and 15 healthy individuals (controls). We assessed gut microbiome profiles in association with disease severity and changes in fecal shedding of SARS-CoV-2. RESULTS: Patients with COVID-19 had significant alterations in fecal microbiomes compared with controls, characterized by enrichment of opportunistic pathogens and depletion of beneficial commensals, at time of hospitalization and at all timepoints during hospitalization. Depleted symbionts and gut dysbiosis persisted even after clearance of SARS-CoV-2 (determined from throat swabs) and resolution of respiratory symptoms. The baseline abundance of Coprobacillus, Clostridium ramosum, and Clostridium hathewayi correlated with COVID-19 severity; there was an inverse correlation between abundance of Faecalibacterium prausnitzii (an anti-inflammatory bacterium) and disease severity. Over the course of hospitalization, Bacteroides dorei, Bacteroides thetaiotaomicron, Bacteroides massiliensis, and Bacteroides ovatus, which downregulate expression of angiotensin-converting enzyme 2 (ACE2) in murine gut, correlated inversely with SARS-CoV-2 load in fecal samples from patients. CONCLUSIONS: In a pilot study of 15 patients with COVID-19, we found persistent alterations in the fecal microbiome during the time of hospitalization, compared with controls. Fecal microbiota alterations were associated with fecal levels of SARS-CoV-2 and COVID-19 severity. Strategies to alter the intestinal microbiota might reduce disease severity.


Subject(s)
Betacoronavirus , Coronavirus Infections/microbiology , Dysbiosis/virology , Feces/microbiology , Gastrointestinal Microbiome/genetics , Pneumonia, Viral/microbiology , Adult , Aged , COVID-19 , Female , Gastrointestinal Tract/microbiology , Hong Kong/epidemiology , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Pandemics , Pilot Projects , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...