Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313429

ABSTRACT

Accumulating mutations on SARS-CoV-2 Spike (S) protein may increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, in a panel of receptor binding domain (S-RBD) specific monoclonal antibodies (mAbs) with high neutralizing potency against authentic SARS-CoV-2, at least 6 of them were found to efficiently block the pseudovirus of 501Y.V2, a highly transmissible SARS-CoV-2 variant with escape mutations. The top 3 neutralizing Abs (13G9, 58G6 and 510A5) exhibited comparative ultrapotency as those being actively pursued for clinical development. Interestingly, the antigenic sites for the majority of our neutralizing Abs overlapped with a single epitope (13G9e) on S-RBD. Further, the 3-dimensional structures of 2 ultrapotent neutralizing Abs 13G9 or 58G6 in complex with SARS-CoV-2 S trimer demonstrated that both Abs bound to a steric region within S 472–490 . Moreover, a specific linear region (S 450–457 ) was identified as an additional target for 58G6. Importantly, our cryo-electron microscopy (cryo-EM) analysis revealed a unique phenomenon that the S-RBDs interacting with the fragments of antigen binding (Fabs) of 13G9 or 58G6 encoded by the IGHV1-58 and the IGKV3-20 gene segments were universally in the ‘up’ conformation in all observed particles. The potent neutralizing Abs presented in the current study may be promising candidates to fulfill the urgent needs for the current pandemic of SARS-CoV-2, and may of fundamental value for the next-generation vaccine development.

2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-311951

ABSTRACT

After the epidemic of COVID-19, neutralizing antibodies (NAbs) against SARS-CoV-2 has been developed for the preventative and therapeutic purposes. However, few methodologies are reported in detail on how to rapidly and efficiently generate NAbs of interest. Here, we present a strategically optimized screening method for NAbs, which has enabled us to obtain SARS-CoV-2 receptor-binding domain (RBD) specific monoclonal Abs within 4 days, followed by additional 2 days to evaluate their neutralizing activities. Using this method, we obtained 198 specific Abs against SARS-CoV-2 RBD from the blood samples of COVID-19 convalescent patients, and 96 of them showed neutralizing activity. At least 20% of these NAbs exhibited high neutralizing potency. The top 2 NAbs showed the half-maximal inhibitory concentration (IC50) to block authentic SARS-CoV-2 at 9.88 and 11.13 ng/ml, respectively. Altogether, our study provides a fundamental methodology for discovering NAbs with potential preventative and therapeutic value for emerging infectious diseases.

3.
Emerg Microbes Infect ; 11(1): 483-497, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1606402

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has set off a global pandemic. There is an urgent unmet need for safe, affordable, and effective therapeutics against COVID-19. In this regard, drug repurposing is considered as a promising approach. We assessed the compounds that affect the endosomal acidic environment by applying human angiotensin-converting enzyme 2 (hACE2)- expressing cells infected with a SARS-CoV-2 spike (S) protein-pseudotyped HIV reporter virus and identified that obatoclax resulted in the strongest inhibition of S protein-mediated virus entry. The potent antiviral activity of obatoclax at nanomolar concentrations was confirmed in different human lung and intestinal cells infected with the SARS-CoV-2 pseudotype system as well as clinical virus isolates. Furthermore, we uncovered that obatoclax executes a double-strike against SARS-CoV-2. It prevented SARS-CoV-2 entry by blocking endocytosis of virions through diminished endosomal acidification and the corresponding inhibition of the enzymatic activity of the endosomal cysteine protease cathepsin L. Additionally, obatoclax impaired the SARS-CoV-2 S-mediated membrane fusion by targeting the MCL-1 protein and reducing furin protease activity. In accordance with these overarching mechanisms, obatoclax blocked the virus entry mediated by different S proteins derived from several SARS-CoV-2 variants of concern such as, Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2). Taken together, our results identified obatoclax as a novel effective antiviral compound that keeps SARS-CoV-2 at bay by blocking both endocytosis and membrane fusion. Our data suggested that obatoclax should be further explored as a clinical drug for the treatment of COVID-19.


Subject(s)
Cathepsins/metabolism , Furin/metabolism , Indoles/pharmacology , Pyrroles/pharmacology , SARS-CoV-2 , Virus Internalization/drug effects , COVID-19 , Humans , Hydrogen-Ion Concentration , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus
4.
Nat Commun ; 12(1): 6304, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500462

ABSTRACT

Accumulating mutations in the SARS-CoV-2 Spike (S) protein can increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, 3 receptor binding domain (RBD) specific monoclonal antibodies (mAbs), 58G6, 510A5 and 13G9, with high neutralizing potency blocking authentic SARS-CoV-2 virus display remarkable efficacy against authentic B.1.351 virus. Surprisingly, structural analysis has revealed that 58G6 and 13G9 both recognize the steric region S470-495 on the RBD, overlapping the E484K mutation presented in B.1.351. Also, 58G6 directly binds to another region S450-458 in the RBD. Significantly, 58G6 and 510A5 both demonstrate prophylactic efficacy against authentic SARS-CoV-2 and B.1.351 viruses in the transgenic mice expressing human ACE2 (hACE2), protecting weight loss and reducing virus loads. Together, we have evidenced 2 potent neutralizing Abs with unique mechanism targeting authentic SARS-CoV-2 mutants, which can be promising candidates to fulfill the urgent needs for the prolonged COVID-19 pandemic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Binding Sites , COVID-19/pathology , COVID-19/virology , Epitopes , Humans , Mice , Mice, Transgenic , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Load/drug effects , Weight Loss/drug effects
6.
Clin Infect Dis ; 73(3): e531-e539, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338662

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a global pandemic with no licensed vaccine or specific antiviral agents for therapy. Little is known about the longitudinal dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing antibodies (NAbs) in patients with COVID-19. METHODS: Blood samples (n = 173) were collected from 30 patients with COVID-19 over a 3-month period after symptom onset and analyzed for SARS-CoV-2-specific NAbs using the lentiviral pseudotype assay, coincident with the levels of IgG and proinflammatory cytokines. RESULTS: SARS-CoV-2-specific NAb titers were low for the first 7-10 days after symptom onset and increased after 2-3 weeks. The median peak time for NAbs was 33 days (interquartile range [IQR], 24-59 days) after symptom onset. NAb titers in 93.3% (28/30) of the patients declined gradually over the 3-month study period, with a median decrease of 34.8% (IQR, 19.6-42.4%). NAb titers increased over time in parallel with the rise in immunoglobulin G (IgG) antibody levels, correlating well at week 3 (r = 0.41, P < .05). The NAb titers also demonstrated a significant positive correlation with levels of plasma proinflammatory cytokines, including stem cell factor (SCF), TNF-related apoptosis-inducing ligand (TRAIL), and macrophage colony-stimulating factor (M-CSF). CONCLUSIONS: These data provide useful information regarding dynamic changes in NAbs in patients with COVID-19 during the acute and convalescent phases.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Pandemics
7.
Front Immunol ; 12: 653189, 2021.
Article in English | MEDLINE | ID: covidwho-1172966

ABSTRACT

After the pandemic of COVID-19, neutralizing antibodies (NAbs) against SARS-CoV-2 have been developed for the prophylactic and therapeutic purposes. However, few methodologies are described in detail on how to rapidly and efficiently generate effective NAbs to SARS-CoV-2. Here, we integrated and optimized a strategically screening method for NAbs, which has enabled us to obtain SARS-CoV-2 receptor-binding domain (RBD) specific NAbs within 6 days, followed by additional 9 days for antibody production and function analysis. Using this method, we obtained 198 specific Abs against SARS-CoV-2 RBD from the blood samples of COVID-19 convalescent patients, and 96 of them showed neutralizing activity. At least 20% of these NAbs exhibited advanced neutralizing potency and high affinity, with the top two NAbs showing half-maximal inhibitory concentration (IC50) to block authentic SARS-CoV-2 at 9.88 and 11.13 ng/ml, respectively. Altogether, our study provides an effective methodology with high applicable value for discovering potential preventative and therapeutic NAbs for the emerging infectious diseases.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , Humans , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL