ABSTRACT
Wuhan took strict measures to prevent the spread of COVID-19 from January 26 to April 7 in 2020. The lockdown reduced the concentrations of atmospheric pollutants, except ozone (O3). To investigate the increase in O3 during the lockdown, trace gas pollutants were collected. The initial concentrations of volatile organic compounds (VOCs) were calculated based on a photochemical ratio method, and the ozone formation potential (OFP) was obtained using the initial and measured VOC concentrations. The O3 formation regime was NOX-limited based on the VOCs/NOX diurnal ratios during the lockdown period. The reduced nitric oxide (NO) concentrations and lower wind speed (WS) could explain the night-time O3 accumulation. The initial total VOCs (TVOCs) during the lockdown were 47.6 ± 2.9 ppbv, and alkenes contributed 48.1%. The photochemical loss amounts of alkenes were an order of magnitude higher than those of alkenes in the same period in 2019 and increased from 16.6 to 28.0 ppbv in the daytime. The higher initial alkene concentrations sustained higher OFP during the lockdown, reaching between 252.4 and 504.4 ppbv. The initial isoprene contributed approximately 35.0-55.0% to the total OFP and had a positive correlation with the increasing O3 concentrations. Approximately 75.5% of the temperatures were concentrated in the range of 5 and 20 °C, which were higher than those in 2019. In addition to stronger solar radiation, the higher temperatures induced higher isoprene emission rates, partially accounting for the higher isoprene concentrations. Lower isoprene-emitting trees should be considered for future urban vegetation to control O3 episodes.
ABSTRACT
There has been an important change in the clinical characteristics and immune profile of Coronavirus disease 2019 (COVID-19) patients during the pandemic thanks to the extensive vaccination programs. Here, we highlight recent studies on COVID-19, from the clinical and immunological characteristics to the protective and risk factors for severity and mortality of COVID-19. The efficacy of the COVID-19 vaccines and potential allergic reactions after administration are also discussed. The occurrence of new variants of concerns such as Omicron BA.2, BA.4, and BA.5 and the global administration of COVID-19 vaccines have changed the clinical scenario of COVID-19. Multisystem inflammatory syndrome in children (MIS-C) may cause severe and heterogeneous disease but with a lower mortality rate. Perturbations in immunity of T cells, B cells, and mast cells, as well as autoantibodies and metabolic reprogramming may contribute to the long-term symptoms of COVID-19. There is conflicting evidence about whether atopic diseases, such as allergic asthma and rhinitis, are associated with a lower susceptibility and better outcomes of COVID-19. At the beginning of pandemic, the European Academy of Allergy and Clinical Immunology (EAACI) developed guidelines that provided timely information for the management of allergic diseases and preventive measures to reduce transmission in the allergic clinics. The global distribution of COVID-19 vaccines and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with reduced pathogenic potential dramatically decreased the morbidity, severity, and mortality of COVID-19. Nevertheless, breakthrough infection remains a challenge for disease control. Hypersensitivity reactions (HSR) to COVID-19 vaccines are low compared to other vaccines, and these were addressed in EAACI statements that provided indications for the management of allergic reactions, including anaphylaxis to COVID-19 vaccines. We have gained a depth knowledge and experience in the over 2 years since the start of the pandemic, and yet a full eradication of SARS-CoV-2 is not on the horizon. Novel strategies are warranted to prevent severe disease in high-risk groups, the development of MIS-C and long COVID-19.
ABSTRACT
Coronaviruses are a major source of emerging infectious diseases in recent years.With a variety of family members,wide host spectrum,and diverse mutant strains,coronaviruses have demonstrated unique advantages in evolution.This paper reviews the research progress of coronaviruses from genome characteristics,host animals,distribution of receptorsand gene mutations,summarizes the advantages of coronaviruses in evolution and transmission,aiming to draw attention to the prevention and control of such viruses.
ABSTRACT
OBJECTIVE: During the lockdown of cities and home quarantine, media became the only way for people to conveniently get coronavirus disease-2019 (COVID-19)-related information. And media engagement was closely related to psychological outcomes. But fewer researchers took COVID-19-related posting behaviors into consideration. Therefore, the present study aimed at examining the differences in psychological outcomes between people who posted COVID-19-related content on social media and those who did not. METHODS: The present study included 917 participants (304 males, 613 females) who had answered the questionnaires of media engagement, positive affect, negative affect, depression, anxiety, stress, satisfaction with life, death anxiety, and meaning in life. RESULTS: Results of t-tests showed that the Post group had lower levels of negative affect, anxiety, stress, and death anxiety than the Not Post (Npost) group. Network comparison tests indicated that the Npost group's network and the Post group's network differed in global strength, two edge-weights, and node centrality indices. CONCLUSION: The results indicated that more attention should be paid to people who did not post any COVID-19-related content, especially when they have higher levels of stress and depression to prevent comorbidities. And for people who posted content, more attention should be paid when they have a higher level of negative affect.
ABSTRACT
Currently, the majority of the global population has been vaccinated with the COVID-19 vaccine, and characterization studies of antibodies in vivo from Omicron breakthrough infection and naive infection populations are urgently needed to provide pivotal clues about accurate diagnosis, treatment, and next-generation vaccine design against SARS-CoV-2 infection. We showed that after infection with Omicron-BA.2, the antibody levels of specific IgM against the Wuhan strain and specific IgG against Omicron were not significantly elevated within 27 days of onset. Interestingly, in this study, the levels of humoral immunity against Omicron-specific IgM were significantly increased after breakthrough infection, suggesting that the detection of Omicron-specific IgM antibodies can be used as a test criterion of Omicron breakthrough infection. In addition, we observed that serums from unvaccinated individuals and the majority of vaccinated infections possessed only low or no neutralizing activity against Omicron at the onset of Omicron breakthrough infections, and at the later stage of Omicron-BA.2 breakthrough infection, levels of neutralization antibody against the Wuhan and Omicron strains were elevated in infected individuals. The findings of this study provide important clues for the diagnosis of Omicron breakthrough infections, antibody characterization studies and vaccine design against COVID-19.
Subject(s)
Antibody Formation , COVID-19 , Humans , SARS-CoV-2 , Antibodies, Viral , COVID-19 Vaccines , Immunoglobulin MABSTRACT
There has been an important change in the clinical characteristics and immune profile of Coronavirus disease 2019 (COVID-19) patients during the pandemic thanks to the extensive vaccination programs. Here, we highlight recent studies on COVID-19, from the clinical and immunological characteristics to the protective and risk factors for severity and mortality of COVID-19. The efficacy of the COVID-19 vaccines and potential allergic reactions after administration are also discussed. The occurrence of new variants of concerns such as Omicron BA.2, BA.4, and BA.5 and the global administration of COVID-19 vaccines have changed the clinical scenario of COVID-19. Multisystem inflammatory syndrome in children (MIS-C) may cause severe and heterogeneous disease but with a lower mortality rate. Perturbations in immunity of T cells, B cells, and mast cells, as well as autoantibodies and metabolic reprogramming may contribute to the long-term symptoms of COVID-19. There is conflicting evidence about whether atopic diseases, such as allergic asthma and rhinitis, are associated with a lower susceptibility and better outcomes of COVID-19. At the beginning of pandemic, the European Academy of Allergy and Clinical Immunology (EAACI) developed guidelines that provided timely information for the management of allergic diseases and preventive measures to reduce transmission in the allergic clinics. The global distribution of COVID-19 vaccines and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with reduced pathogenic potential dramatically decreased the morbidity, severity, and mortality of COVID-19. Nevertheless, breakthrough infection remains a challenge for disease control. Hypersensitivity reactions (HSR) to COVID-19 vaccines are low compared to other vaccines, and these were addressed in EAACI statements that provided indications for the management of allergic reactions, including anaphylaxis to COVID-19 vaccines. We have gained a depth knowledge and experience in the over 2 years since the start of the pandemic, and yet a full eradication of SARS-CoV-2 is not on the horizon. Novel strategies are warranted to prevent severe disease in high-risk groups, the development of MIS-C and long COVID-19.
ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants could induce immune escape by mutations of the spike protein which are threatening to weaken vaccine efficacy. A booster vaccination is expected to increase the humoral immune response against SARS-CoV-2 variants in the population. We showed that immunization with two doses of wild type receptor-binding domain (RBD) protein, and booster vaccination with wild type or variant RBD protein all significantly increased binding and neutralizing antibody titers against wild type SARS-CoV-2 and its variants in mice. Only the booster immunization by Omicron (BA.1)RBD induced a strong antibody titer against the omicron virus strain and comparable antibody titers against all the other virus strains. These findings might shed the light on coronavirus disease 2019 booster immunogens.
Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunization, Secondary , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , VaccinationABSTRACT
We aimed to analyze the efficacy and safety of an inactivated SARS-CoV-2 vaccine in people living with HIV (PLWH). A total of 143 PLWH and 50 healthy individuals were included in this study. A commercially available magnetic chemiluminescence enzyme immunoassay kit was used to detect serum IgG and IgM antibodies against SARS-CoV-2. Serum levels of SARS-CoV-2-specific IgG were significantly higher in the control group than in the PLWH group (p = 0.001). Overall, 76% of individuals in the control group were detected with seropositivity IgG against SARS-CoV-2 compared to 58% in the PLWH group (p = 0.024). In PLWH with IgG seropositivity, CD4+ T-cell counts before antiretroviral therapy (ART) was higher (p = 0.015). Multivariable analysis indicated that CD4+ T cells at IgG detection (odds ratio [OR] = 1.004, p = 0.006) and time after vaccination (OR = 0.977, p = 0.014) were independently associated with seropositivity IgG against SARS-CoV-2 in PLWH. Neutralizing antibody (nAb) titers in PLWH against wild-type SARS-CoV-2 were similar to those in the control group (p = 0.160). The proportion of seropositive nAbs against wild-type SARS-CoV-2 was also similar (95% in the control group vs. 97% in the PLWH group, p = 0.665). Similar results were obtained when nAb was detected against the delta variants with similar titers (p = 0.355) and a similar proportion of seropositive nAbs were observed (p = 0.588). All the side effects observed in our study were mild and self-limiting. The inactivated COVID-19 vaccine appears to be safe with good immunogenicity in Chinese PLWH.
Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cross-Sectional Studies , Humans , Immunogenicity, Vaccine , Immunoglobulin G , SARS-CoV-2ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus driving the ongoing coronavirus disease 2019 (COVID-19) pandemic, continues to rapidly evolve. Because of the limited efficacy of vaccination in prevention of SARS-CoV-2 transmission and continuous emergence of variants of concern (VOCs), orally bioavailable and broadly efficacious antiviral drugs are urgently needed. Previously, we showed that the parent nucleoside of remdesivir, GS-441524, has potent anti-SARS-CoV-2 activity. Here, we report that esterification of the 5'-hydroxyl moieties of GS-441524 markedly improved antiviral potency. This 5'-hydroxyl-isobutyryl prodrug, ATV006, demonstrated excellent oral bioavailability in rats and cynomolgus monkeys and exhibited potent antiviral efficacy against different SARS-CoV-2 VOCs in vitro and in three mouse models. Oral administration of ATV006 reduced viral loads and alleviated lung damage when administered prophylactically and therapeutically to K18-hACE2 mice challenged with the Delta variant of SARS-CoV-2. These data indicate that ATV006 represents a promising oral antiviral drug candidate for SARS-CoV-2.
Subject(s)
COVID-19 Drug Treatment , Prodrugs , Adenosine/therapeutic use , Adenosine Monophosphate/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice , Prodrugs/pharmacology , Prodrugs/therapeutic use , Rats , SARS-CoV-2ABSTRACT
BACKGROUND: Chest computed tomography (CT) has been found to have high sensitivity in diagnosing novel coronavirus pneumonia (NCP) at the early stage, giving it an advantage over nucleic acid detection during the current pandemic. In this study, we aimed to develop and validate an integrated deep learning framework on chest CT images for the automatic detection of NCP, focusing particularly on differentiating NCP from influenza pneumonia (IP). METHODS: A total of 148 confirmed NCP patients [80 male; median age, 51.5 years; interquartile range (IQR), 42.5-63.0 years] treated in 4 NCP designated hospitals between January 11, 2020 and February 23, 2020 were retrospectively enrolled as a training cohort, along with 194 confirmed IP patients (112 males; median age, 65.0 years; IQR, 55.0-78.0 years) treated in 5 hospitals from May 2015 to February 2020. An external validation set comprising 57 NCP patients and 50 IP patients from 8 hospitals was also enrolled. Two deep learning schemes (the Trinary scheme and the Plain scheme) were developed and compared using receiver operating characteristic (ROC) curves. RESULTS: Of the NCP lesions, 96.6% were >1 cm and 76.8% were of a density <-500 Hu, indicating them to have less consolidation than IP lesions, which had nodules ranging from 5-10 mm. The Trinary scheme accurately distinguished NCP from IP lesions, with an area under the curve (AUC) of 0.93. For patient-level classification in the external validation set, the Trinary scheme outperformed the Plain scheme (AUC: 0.87 vs. 0.71) and achieved human specialist-level performance. CONCLUSIONS: Our study has potentially provided an accurate tool on chest CT for early diagnosis of NCP with high transferability and showed high efficiency in differentiating between NCP and IP; these findings could help to reduce misdiagnosis and contain the pandemic transmission.
ABSTRACT
The development of neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following infection or vaccination is likely to be critical for the development of sufficient population immunity to drive cessation of the coronavirus disease of 2019 (COVID-19) pandemic. A large number of serologic tests, platforms, and methodologies are being employed to determine seroprevalence in populations to select convalescent plasma samples for therapeutic trials and to guide policies about reopening. However, the tests have substantial variations in sensitivity and specificity, and their ability to quantitatively predict levels of NAbs is unknown. We collected 370 unique donors enrolled in the New York Blood Center Convalescent Plasma Program between April and May of 2020. We measured levels of antibodies in convalescent plasma samples using commercially available SARS-CoV-2 detection tests and in-house enzyme-linked immunosorbent assays (ELISAs) and correlated serological measurements with NAb activity measured using pseudotyped virus particles, which offer the most informative assessment of antiviral activity of patient sera against viral infection. Our data show that a large proportion of convalescent plasma samples have modest antibody levels and that commercially available tests have various degrees of accuracy in predicting NAb activity. We found that the Ortho anti-SARS-CoV-2 total Ig and IgG high-throughput serological assays (HTSAs) and the Abbott SARS-CoV-2 IgG assay quantify levels of antibodies that strongly correlate with the results of NAb assays and are consistent with gold standard ELISA results. These findings provide immediate clinical relevance to serology results that can be equated to NAb activity and could serve as a valuable roadmap to guide the choice and interpretation of serological tests for SARS-CoV-2.
Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Biological Variation, Population , COVID-19/epidemiology , COVID-19/immunology , SARS-CoV-2/immunology , Serologic Tests , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/virology , Cell Line , Enzyme-Linked Immunosorbent Assay , High-Throughput Screening Assays , Humans , Immunophenotyping , Leukocytes, Mononuclear , Population Surveillance , Sensitivity and Specificity , Seroepidemiologic Studies , Serogroup , Serologic Tests/methods , United States/epidemiologyABSTRACT
Managing recovered COVID-19 patients with recurrent-positive SARS-CoV-2 RNA test results is challenging. We performed a population-based observational study to characterize the viral RNA level and serum antibody responses in recurrent-positive patients and evaluate their viral transmission risk. Of 479 recovered COVID-19 patients, 93 (19%) recurrent-positive patients were identified, characterized by younger age, with a median discharge-to-recurrent-positive length of 8 days. After readmission, recurrent-positive patients exhibited mild (28%) or absent (72%) symptoms, with no disease progression. The viral RNA level in recurrent-positive patients ranged from 1.8 to 5.7 log10 copies/mL (median: 3.2), which was significantly lower than the corresponding values at disease onset. There are generally no significant differences in antibody levels between recurrent-positive and non-recurrent-positive patients, or in recurrent-positive patients over time (before, during, or after recurrent-positive detection). Virus isolation of nine representative specimens returned negative results. Whole genome sequencing of six specimens yielded only genomic fragments. 96 close contacts and 1,200 candidate contacts of 23 recurrent-positive patients showed no clinical symptoms; their viral RNA (1,296/1,296) and antibody (20/20) tests were negative. After full recovery (no longer/never recurrent-positive), 60% (98/162) patients had neutralizing antibody titers of ≥1:32. Our findings suggested that an intermittent, non-stable excretion of low-level viral RNA may result in recurrent-positive occurrence, rather than re-infection. Recurrent-positive patients pose a low transmission risk, a relatively relaxed management of recovered COVID-19 patients is recommended.
Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , Adult , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Female , Genome, Viral/genetics , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/therapy , Pneumonia, Viral/transmission , Recurrence , SARS-CoV-2 , Whole Genome Sequencing , Young AdultABSTRACT
We aimed to describe the clinical features in coronavirus disease 2019 (COVID-19) cases. We studied 134 critically ill COVID-19 cases from 30 December 2019 to 20 February 2020 in an intensive care unit (ICU) at Wuhan Jinyintan Hospital. Demographics, underlying diseases, therapy strategies and test results were collected and analysed from patients on admission, admission to the ICU and 48 h before death. The non-survivors were older (65.46 (s.d. 9.74) vs. 46.45 (s.d. 11.09)) and were more likely to have underlying diseases. The blood group distribution of the COVID-19 cases differed from that of the Han population in Wuhan, with type A being 43.85%; type B, 26.92%; type AB, 10% and type O, 19.23%. Non-survivors tend to develop more severe lymphopaenia, with higher C-reactive protein, interleukin-6, procalcitonin, D-dimer levels and gradually increased with time. The clinical manifestations were non-specific. Compared with survivors, non-survivors more likely to have organ function injury, and to receive mechanical ventilation, either invasively or noninvasively. Multiple organ failure and secondary bacterial infection in the later period is worthy of attention.
Subject(s)
Betacoronavirus , Coronavirus Infections/physiopathology , Pneumonia, Viral/physiopathology , ABO Blood-Group System , Adult , Age Factors , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Retrospective Studies , SARS-CoV-2 , Young AdultABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus first identified in December 2019. Notable features that make SARS-CoV-2 distinct from most other previously identified betacoronaviruses include a receptor binding domain and a unique insertion of 12 nucleotides or 4 amino acids (PRRA) at the S1/S2 boundary. In this study, we identified two deletion variants of SARS-CoV-2 that either directly affect the polybasic cleavage site itself (NSPRRAR) or a flanking sequence (QTQTN). These deletions were verified by multiple sequencing methods. In vitro results showed that the deletion of NSPRRAR likely does not affect virus replication in Vero and Vero-E6 cells; however, the deletion of QTQTN may restrict late-phase viral replication. The deletion of QTQTN was detected in 3 of 68 clinical samples and 12 of 24 in vitro-isolated viruses, while the deletion of NSPRRAR was identified in 3 in vitro-isolated viruses. Our data indicate that (i) there may be distinct selection pressures on SARS-CoV-2 replication or infection in vitro and in vivo; (ii) an efficient mechanism for deleting this region from the viral genome may exist, given that the deletion variant is commonly detected after two rounds of cell passage; and (iii) the PRRA insertion, which is unique to SARS-CoV-2, is not fixed during virus replication in vitro These findings provide information to aid further investigation of SARS-CoV-2 infection mechanisms and a better understanding of the NSPRRAR deletion variant observed here.IMPORTANCE The spike protein determines the infectivity and host range of coronaviruses. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has two unique features in its spike protein, the receptor binding domain and an insertion of 12 nucleotides at the S1/S2 boundary resulting in a furin-like cleavage site. Here, we identified two deletion variants of SARS-CoV-2 that either directly affect the furin-like cleavage site itself (NSPRRAR) or a flanking sequence (QTQTN), and we investigated these deletions in cell isolates and clinical samples. The absence of the polybasic cleavage site in SARS-CoV-2 did not affect virus replication in Vero or Vero-E6 cells. Our data indicate the PRRAR sequence and the flanking QTQTN sequence are not fixed in vitro; thus, there appears to be distinct selection pressures on SARS-CoV-2 sequences in vitro and in vivo Further investigation of the mechanism of generating these deletion variants and their infectivity in different animal models would improve our understanding of the origin and evolution of this virus.
Subject(s)
Betacoronavirus/genetics , Betacoronavirus/metabolism , Sequence Deletion , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Amino Acid Sequence , Animals , Base Sequence , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/virology , Furin/metabolism , Genome, Viral , Host Specificity , Kinetics , Models, Molecular , Pandemics , Pneumonia, Viral/virology , Protein Conformation , SARS-CoV-2 , Sequence Analysis , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells , Virus ReplicationABSTRACT
OBJECTIVE: To prevent the rapid spread of COVID-19, the Chinese government implemented a strict lockdown in Wuhan starting on 23 January, 2020, which inevitably led to the changes in indications for the mode of delivery. In this retrospective study, we present the changes in the indications for cesarean delivery (CD) and the birth weights of newborns after the lockdown in Wuhan. METHODS: A total of 3,432 pregnant women in the third trimester of their pregnancies who gave birth in our hospital from 23 January 2019 to 24 March 2020 were selected as the observation group, while 7,159 pregnant women who gave birth from 1 January 2019 to 22 January 2020 were selected as the control group; control group was matched using propensity score matching (PSM). A comparative analysis of the two groups was performed with the chi-square test, t test and rank sum test. RESULTS: The difference in the overall rate of CD between the two groups was not statistically significant (p<0.05). Among the indications for CD, CD on maternal request (CDMR) and fetal distress were also significantly more common in the observation group (p<0.05) than the control group. Furthermore, we found that the weight of newborns was significantly heavier in the observation group than in the control group when considering full-term or close-to-full-term births (p<0.05). CONCLUSIONS: The results may provide useful information to management practices regarding pregnancy and childbirth after lockdown in other cities or countries, enabling better control of the rate of CD due to CDMR, reducing fetal distress, and controlling newborn weight. We recommend that pregnant women pay more attention to controlling the weight of newborns through diet and exercise.
Subject(s)
Betacoronavirus , Birth Weight , Cesarean Section , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Quarantine/methods , Adolescent , Adult , COVID-19 , China/epidemiology , Coronavirus Infections/virology , Female , Fetal Distress , Humans , Infant, Newborn , Middle Aged , Natural Childbirth , Pneumonia, Viral/virology , Pregnancy , Retrospective Studies , SARS-CoV-2 , Term Birth , Young AdultABSTRACT
OBJECTIVE: To describe the clinical features of coronavirus disease 2019 (COVID-19). METHODS: We recruited 73 patients with COVID-19 [49 men and 24 women; average age: 58.36 years (SD: 14.31)] admitted to the intensive care unit of Wuhan Jinyintan Hospital from December 30, 2019 to February 16, 2020. Demographics, underlying diseases, and laboratory test results on admission were collected and analyzed. Data were compared between survivors and non-survivors. RESULTS: The non-survivors were older (65.46 [SD 9.74]vs 46.23 [12.01]) and were more likely to have chronic medical illnesses. Non-survivors tend to develop more severe lymphopenia, with higher C-reactive protein, interleukin-6, D-dimer, and hs-Troponin I(hs-TnI) levels. Patients with elevated hs-TnI levels on admission had shorter duration from symptom onset to death. Increased hs-TnI level was related to dismal prognosis. Death risk increased by 20.8% when the hs-TnI level increased by one unit. After adjusting for inflammatory or coagulation index, the independent predictive relationship between hs-TnI and death disappeared. CONCLUSIONS: Cardiac injury may occur at the early stage of COVID-19, which is associated with high mortality. Inflammatory factor cascade and coagulation abnormality may be the potential mechanisms of COVID-19 combined with cardiac injury.