ABSTRACT
Abundant disposable surgical masks (SMs) remain in the environment and continue to age under urban environmental stressors. This study aimed to investigate the aging characteristics of SMs and the effect of different aged layers of SMs on phenanthrene (PHE), tylosin (TYL), and sulfamethazine (SMT) under two different urban environmental stressors (UV and ozone). The results show that UV exposure causes more severe aging of the SM layers than ozone. The middle layer, made of melt-brown fabric, has displayed the highest degree of aging due to its smaller diameter and mechanical strength. The two-dimensional correlation spectroscopy (2D-COS) analysis reveals the different aging sequences of functional groups and three layers in aged SMs under the two urban environmental stressors. Whether the SMs are aged or not, the adsorptions of three organic pollutants on SMs are positively correlated with the octanol-water partition coefficient. Furthermore, except for the dominant hydrophobic interaction, aged SMs can promote the adsorption of three organic pollutants by accessory interactions (hydrogen bonding and partition), depending on their structures. These findings highlight the environmental effects of new microplastic (MP) sources and coexisting pollutants under the influence of COVID-19, which is helpful in accurately evaluating the biological toxicity of SMs. © 2022 Elsevier B.V.
ABSTRACT
Inexpensive iron-based catalysts are the most promising catalysts for microwave pyrolysis of waste plastics, especially a large number of disposable medical masks (DMMs) with biological hazards produced by spread of COVID-19. However, most synthesized iron-based catalysts have very low microwave heating efficiency due to the enrichment state of iron. Here, we prepared FeAlOx catalysts using the microwave heating method and found that the microwave heating efficiency of amorphous iron and hematite is very low, indeed, these materials can hardly initiate pyrolysis at room temperature, which limits the application of iron-based catalysts in microwave pyrolysis. By contrast, a mixture of DMMs and low-valent iron oxides produced by hydrogen reduction at 500 °C can be heated by microwaves to temperatures above 900 °C under the same conditions. When the hydrogen reduction temperature was incerased to 800 °C, the content of metallic iron in the catalyst gradually increased from 0.34 to 21.43%, which enhanced the microwave response ability of the catalyst, and decreased the gas content in the pyrolysis product from 78.91 to 70.93 wt%;corresponding hydrogen yield also decreased from 29.03 to 25.02 mmolH2·g-1DMMs. Moreover, the morphology of the deposited solid carbon gradually changed from multi-walled CNTs to bamboo-like CNTs. This study clarifies the pyrolysis mechanism of microwave-assisted iron catalysts and lays a theoretical foundation for their application in microwave pyrolysis. © 2022 Elsevier Ltd
ABSTRACT
The low-carbon development of air transport industry is of great significance for China to achieve the commitment of carbon peak and carbon neutrality goals. In order to improve the basic data of aviation CO2 emissions, this study continuously collected full flight information in China from January 2017 to December 2020, and established a flight information database and an aircraft-engine parameter database. On the basis of IPCC's Tier 3B accounting method, this study established a long-term aviation CO2 emissions inventory of China from 2017 to 2020 by calculating and accumulating CO2 emissions of each flight. And aviation CO2 emissions of various provinces and cities in China were calculated combined with spatial allocation method. The results showed that aviation CO2 emissions in China was 104.1, 120.1, 136.9, and 88.3 Mt in 2017, 2018, 2019, and 2020, respectively, with annual growth rates of 15.4%, 14.0%, and −35.3% in 2018, 2019, and 2020, respectively. Affected by the COVID-19 pandemic, aviation CO2 emissions in all 31 provinces and 93% of cities decreased in 2020 compared with 2019. China is in the stage of rapid development of air transport industry, and aviation fossil energy consumption and CO2 emissions have continued to grow in recent years. © 2022 Elsevier Ltd
ABSTRACT
The COVID-19 pandemic has caused severe health problems worldwide and unprecedented decimation of the global economy. Moreover, after more than 2 years, many populations are still under pressure of infection. Thus, a broader perspective in developing antiviral strategies is still of great importance. Inspired by the observed multiple benefits of heparin in the treatment of thrombosis, the potential of low molecular weight heparin (LMWH) for the treatment of COVID-19 have been explored. Clinical applications found that LMWH decreased the level of inflammatory cytokines in COVID-19 patients, accordingly reducing lethality. Furthermore, several in vitro studies have demonstrated the important roles of heparan sulfate in SARS-CoV-2 infection and the inhibitory effects of heparin and heparin mimetics in viral infection. These clinical observations and designed studies argue for the potential to develop heparin mimetics as anti-SARS-CoV-2 drug candidates. In this review, we summarize the properties of heparin as an anticoagulant and the pharmaceutical possibilities for the treatment of virus infection, focusing on the perspectives of developing heparin mimetics via chemical synthesis, chemoenzymatic synthesis, and bioengineered production by microbial cell factories. The ultimate goal is to pave the eminent need for exploring novel compounds to treat coronavirus infection-caused diseases.
ABSTRACT
Our world has been permanently changed by the pandemic outbreak of COVID-19 starts around the end of 2019. In the first few months of 2020, the whole world was in urgent need of an effective, easy, and quick method for the identification of the infection of the new virus. Polymerase Chain Reaction (PCR) machine, which can test DNA samples by rapidly making millions of copies of a specific DNA sample through the PCR process, including the COVID-19 virus, can perfectly fit this demand. In this study, a design project on PCR is introduced for undergraduate education in electrical and mechanical engineering. The objective of this project is to develop a low-cost, ease-of-use, wallet-size, portable real-time PCR (RT-PCR) machine for accurate testing of various bacteria or viruses. The key function of the PT-PCR system is to precisely control and maintain the temperature of the bio-sample solution within a range between 55℃ and 95℃. The RT-PCR system is centrally controlled by a microcontroller Raspberry Pi 3. It receives temperature measurements from thermistors and operates the heating lid, the thermoelectric module, and the cooling fan to regulate the temperatures required in repetitive thermal cycles. This project provides students opportunities in studying and practicing a wide range of engineering technics and skills, including mechanical design, electronics design, microcomputer programming, system control, power electronics, sensors and actuators, data acquisition and processing, cellphone app development. Students can gain comprehensive understanding of the design of multiphysics system after they overcome various challenges emerging in the project. From the view of engineering education, the process of this project development has demonstrated the importance and benefits of adopting complex interdisciplinary engineering problems for student teams to solve, especially those involve contemporary issues. Copyright 2022. © by the International Institute of Informatics and Systemics. All rights reserved.
ABSTRACT
Background: The COVID-19 pandemic is a huge challenge to world health systems. The harm of public panic is more serious than that of the virus infection. Public panic will create a lot of rumours;Rumours will not only hinder the government's handling of public health emergencies, but also disrupt the public's awareness and behaviour of preventing viruses and cause social unrest. Purpose(s): In order to investigate the demand of the ordinary personnel and health professionals for emergency popularisation of science, discover the current problems in popular science work during public health emergencies, and provided suggestions for future health popular science work. Method(s): This study designed two versions of the health emergency science questionnaire, which are divided into ordinary personnel version and health professional version. From 21st February to 10th March 2020, the authors received questionnaires from 25,935 ordinary personnel and 30,143 professionals from all provinces of China. Result(s): The public has a high demand for health emergency popularisation of science about COVID-19, and the professional demand is higher than the ordinary personnel. Ordinary personnel's evaluation of the role of health emergency popular science in COVID-19 pandemic is 8.58+/-1.80 points (out of ten points), and the professional's evaluation is 8.93+/-1.44 points. Conclusion(s): Ordinary personnel and professionals have highly evaluated the role of health emergency popular science during the COVID-19 pandemic. Mobile Internet is currently the main channel for the public to obtain emergency popular science information, but due to rumours, the public's trust in mobile Internet is low.
ABSTRACT
The total energy recovery ventilator for outdoor air handing plays an important role in reducing energy consumption of the ventilation system. At the same time, the cross infection between fresh air and return air is a direct threat to the safety of energy recovery components with the influence of COVID-19. Therefore, how to improve the total exchange effectiveness and net outdoor air flow ratio in supply air of the heat recovery system has become an urgent problem to be solved. In this study, the composite membrane was prepared by non-woven fabric, siloxaneamide and lithium chloride solution, which was used as the membrane for the heat and mass transfer between fresh air and return air. The variation of the selective permeability of the composite membrane was studied experimentally. The experimental results show that the highest permeance of the composite membrane for the water vapor permeability can reach until 32.5×10-8kg/m2wswPa. The net outdoor air flow ratio in supply air is 94% when the air volume is 550m3/h. The heat exchange efficiency of the heat recovery device is 63.2% under the conditions of the dry and wet bulb temperatures of return air and outdoor air are 21.2°C/12.9°C and 2.3°C/1.2°C, respectively. © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/)
ABSTRACT
Medical Frequently Asked Question (FAQ) retrieval aims to find the most relevant question-answer pairs for a given user query, which is of great significance for enhancing people medical health awareness and knowledge. However, due to medical data privacy and labor-intensive labeling, there is a lack of large-scale question-matching training datasets. Previous methods directly use the collected question-answer pairs on search engines to train retrieval models, which achieved poor performance. Inspired by recent advances in contrastive learning, we propose a novel contrastive curriculum learning framework for modeling user medical queries. First, we design different data augmentation methods to generate positive samples and different types of negative samples. Second, we propose a curriculum learning strategy that associates difficulty levels with negative samples. Through a contrastive learning process from easy to hard, our method achieves excellent results on two medical datasets. © 2022 IEEE.
ABSTRACT
The outbreak of major infectious diseases such as COVID-19 are unpredictable. In order to prevent the rapid spread of the epidemic, it is necessary to quickly start the first-class response to public health emergencies, take prevention and control measures such as isolating confirmed patients, suspected cases and close contacts, tracking their activity tracks, and publishing their infection related information, which may cause the leakage of personal privacy and information. Take preventive and control measures, which needs to protect the public interests while taking into account individual rights and interests, including privacy protection, and obtaining public understanding and support. The ethical governance of personal privacy protection in the prevention and control of major infectious diseases needs to regulate the use of personal information according to laws and regulations, achieve effective ethical governance in multiple dimensions, establish and improve the supervision and management mechanism of personal privacy protection, enhance the privacy protection awareness of relevant departments and staff, increase the punishment for illegal acts, strengthen science popularization, promote public understanding, and improve the efficiency and effectiveness of prevention and control. © 2022, Chinese Medical Ethics. All rights reserved.
ABSTRACT
Under the COVID-19 and other terrible environments workers are constrained to sweep campus and public area. Intelligent and driverless sanitation robot can solve the problem. Obstacle avoidance and garbage cleanup are its important functions. Based on the driverless sanitation robot project introduced by Sanda University, this paper carries out recognition of campus vehicles and improves its obstacle avoidance function. Through image processing, the object features of different environment and climate conditions are extracted, analyzed and recognized, so as to achieve more accurate recognition of campus vehicles. And opencv and python language are used to complete the implementation of vehicle detection. © 2022 IEEE.
ABSTRACT
Aiming at the problem of metro operation and passenger transport organization under the impact of the novel coronavirus (COVID-19), a collaborative determination method of train planning and passenger flow control is proposed to reduce the train load rate in each section and decrease the risk of spreading COVID-19. The Fisher optimal division method is used to determine reasonable passenger flow control periods, and based on this, different flow control rates are adopted for each control period to reduce the difficulty of implementing flow control at stations. According to the actual operation and passenger flow changes, a mathematical optimization model is established. Epidemic prevention risk values (EPRVs) are defined based on the standing density criteria for trains to measure travel safety. The optimization objectives of the model are to minimize the EPRV of trains in each interval, the passenger waiting time and the operating cost of the corporation. The decision variables are the number of running trains during the study period and the flow control rate at each station. The original model is transformed into a single-objective model by the linear weighting of the target, and the model is solved by designing a particle swarm optimization and genetic algorithm (PSO-GA). The validity of the method and the model is verified by actual metro line data. The results of the case study show that when a line is in the moderate-risk area of COVID-19, two more trains should be added to the full-length and short-turn routes after optimization. Combined with the flow control measures for large passenger flow stations, the maximum train load rate is reduced by 35.18%, and the load rate of each section of trains is less than 70%, which meets the requirements of COVID-19 prevention and control. The method can provide a theoretical basis for related research on ensuring the safety of metro operation during COVID-19.
ABSTRACT
OBJECTIVE: Transplant recipients have a higher risk of SARS-CoV-2 infection owing to the use of immunosuppressive drugs like tacrolimus (FK506). FK506 and nirmatrelvir (NMV) (an anti-SARS-CoV-2 drug) are metabolized by cytochrome P450 3A4 and may have potential drug-drug interactions. It is important to determine the effect of NMV on FK506 concentrations. PATIENTS AND METHODS: Following protein precipitation from blood, FK506 and its internal standard (FK506-13C,2d4) were detected by ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). Total 22 blood samples (valley concentrations) from two coronavirus disease 2019 (COVID-19) patients were collected and analyzed for FK506 concentrations. RESULTS: Blood levels of FK506 (0.5-100 ng/mL) showed good linearity. The UHPLC-MS/MS method was validated with intra- and inter-batch accuracies of 104.55-107.85%, and 99.52-108.01%, respectively, and precisions of < 15%. Mean blood FK506 concentration was 12.01 ng/mL (range, 3.15-33.1 ng/mL). Five-day co-administration with NMV increased the FK506 concentrations from 3.15 ng/mL to 33.1 ng/mL, returning to 3.36 ng/mL after a 9-day-washout. CONCLUSIONS: We developed a simple quantification method for therapeutic drug monitoring of FK506 in patients with COVID-19 using UHPLC-MS/MS with protein precipitation. We found that NMV increased FK506 blood concentration 10-fold. Therefore, it is necessary to re-consider co-administration of FK506 with NMV.
Subject(s)
COVID-19 , Tacrolimus , Humans , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , SARS-CoV-2 , Lactams , Leucine , Reproducibility of Results , Drug MonitoringABSTRACT
Objective: To analyze the performance of emergency response to 2019 novel coronavirus (2019-nCoV) positive cases in an international test competition in an Winter Olympic Game venue and provide evidences for the COVID-19 prevention and control in similar competitions. Methods: A retrospective analysis on the epidemiological investigation and nucleic acid test results of the cases, the implementation of prevention and control measures, including the communication with sport teams and others, was conducted. Results: The positive cases of 2019-nCoV among entering people were detected before entry, at airport, hotel and venue. Two positive cases were reported before entry, 2 positive cases infected previously and 3 asymptomatic cases were reported after the entry. The venue public health team and local CDC conducted epidemiological investigation and contact assessment jointly in a timely and efficient manner. No local secondary transmission occurred, but the nucleic acid test results of positive persons fluctuated, posing serious challenges to the implementation of prevention and control measures. Conclusion: In large scale international competition, there is high risk of imported COVID-19. It is necessary to fully consider the fluctuation of nucleic acid test results, the criteria for determination and cancellation of positive results and give warm care to positive cases in the emergency response.
Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Retrospective Studies , SeasonsABSTRACT
Objective: To explore the effect of vaccination on viral negative conversion of children with COVID-19. Methods: A retrospective cohort study was conducted. A cohort of 189 children aged 3-14 years with COVID-19 admitted to Renji Hospital (South branch) of Shanghai Jiao Tong University School of Medicine from April 7th to May 19th 2022 was enrolled in the study. According to the vaccination status, the infected children were divided into an unvaccinated group and a vaccinated group. Age, gender, severity, clinical manifestations, and laboratory tests, etc. were compared between groups, by rank sum test or chi-square test. The effects of vaccination on viral negative conversion were analyzed by a Cox mixed-effects regression model. Additionally, a questionnaire survey was conducted among the parents of unvaccinated children to analyze the reasons for not being vaccinated. Results: A total of 189 children aged 3-14 years were enrolled, including 95 males (50.3%) and 94 females (49.7%), aged 5.7 (4.1,8.6) years. There were 117 cases (61.9%) in the unvaccinated group and 72 cases (38.1%) in the vaccinated group. The age of the vaccinated group was higher than that of the unvaccinated group (8.8 (6.8, 10.6) vs. 4.5 (3.6, 5.9) years, Z=9.45, P<0.001). No significant differences were found in clinical manifestations, disease severity, and laboratory results between groups (all P>0.05), except for the occurrence rate of cough symptoms, which was significantly higher in the vaccinated group than in the non-vaccinated group (68.1% (49/72) vs. 50.4% (59/117),χ2=5.67, P=0.017). The Kaplan-Meier survival curve and Cox mixed-effects regression model showed that the time to the viral negative conversion was significantly shorter in the vaccinated group compared with the unvaccinated group (8 (7, 10) vs. 11 (9, 12) d, Z=5.20, P<0.001; adjusted HR=2.19 (95%CI 1.62-2.97)). For questionnaire survey on the reasons for not receiving a vaccination, 115 questionnaires were distributed and 112 valid questionnaires (97.4%) were collected. The main reasons for not being vaccinated were that parents thought that their children were not in the range of appropriate age for vaccination (51 cases, 45.5%) and children were in special physical conditions (47 cases, 42.0%). Conclusion: Vaccination can effectively shorten the negative conversion time of children with COVID-19 and targeted programs should be developed to increase eligible children's vaccination rate for SARS-CoV-2 vaccination.
Subject(s)
COVID-19 , Vaccines , Child , Female , Male , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Retrospective Studies , SARS-CoV-2 , China/epidemiologyABSTRACT
Due to the wide variety of pathogens causing respiratory tract infection and the close symptoms, coronavirus disease 2019 (COVID-19) needs to be differentiated from other common infections. Early comprehensive detection and accurate identification of respiratory infection pathogens is of great value for early diagnosis, curative effect, as well as monitor of the diseases. Combined detection of multiple pathogens can quickly and accurately detect and distinguish the pathogens, then provide rapid and reliable laboratory diagnostic basis for further treatment. This article elaborates the application and development of multiplex detection assay in the diagnosis of COVID-19 according to the recent research.
Subject(s)
COVID-19 , Respiratory Tract Infections , Humans , COVID-19/diagnosis , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/therapy , Sensitivity and SpecificityABSTRACT
OBJECTIVE: A lack of objective biomarkers is preventing the screening and diagnosis of COVID-19 combined with major depression disorder (COVID-19-MDD). The purpose of this study was to identify diagnostic biomarkers and gene regulatory mechanisms associated with autophagy; a crucial process significantly involved in the pathogenesis of COVID-19-MDD. MATERIALS AND METHODS: In this study, differentially expressed genes (DEGs) were screened using GSE98793 from the GEO2R analysis (GEO) database, and intersected with the COVID-19-related gene (CRGs) and autophagy-related genes (ARGs) to obtain common genes involved in. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of these common genes were performed. Subsequently, the transcription factor (TF)-gene regulatory network and comorbidity network were constructed. In addition, 10 drug candidates were screened using the DSigDB database. To identify diagnostic markers, we used LASSO regression. RESULTS: In total, 13 common genes were screened, which were primarily enriched in lysosomes, endoplasmic reticulum membranes, and other endomembrane systems also associated with autophagy. Additionally, these genes were involved in neurological cell signaling and have a functional role in pathways related to vascular endothelial growth factor, tyrosine kinase, autophagy, inflammation, immunity, and carcinogenesis. Tumors and psychiatric disorders were the most highly linked diseases to COVID-19. Finally, ten drug candidates and eight diagnostic markers (STX17, NRG1, RRAGD, XPO1, HERC1, HSP90AB1, EPHB2, and S1PR3) were screened. CONCLUSIONS: This is the first study to screen eight diagnostic markers and construct a gene regulatory network for COVID-19-MDD from the perspective of autophagy. The findings of our study provide novel insights into the diagnosis and treatment of COVID-19-MDD.
Subject(s)
COVID-19 , Depressive Disorder, Major , Humans , Computational Biology , COVID-19/genetics , Vascular Endothelial Growth Factor A , Biomarkers , Machine Learning , Autophagy/geneticsABSTRACT
Objective: To summarize the management and short-term outcomes of neonates delivered by mothers infected with SARS-CoV-2 Omicron variant. Methods: A retrospective study was performed on 158 neonates born to mothers infected with SARS-CoV-2 Omicron variant admitted to the isolation ward of Children's Hospital of Fudan University from March 15th, 2022 to May 30th, 2022. The postnatal infection control measures for these neonates, and their clinical characteristics and short-term outcomes were analyzed. They were divided into maternal symptomatic group and maternal asymptomatic group according to whether their mothers had SARS-CoV-2 symptoms. The clinical outcomes were compared between the 2 groups using Rank sum test and Chi-square test. Results: All neonates were under strict infection control measures at birth and after birth. Of the 158 neonates, 75 (47.5%) were male. The gestational age was (38+3±1+3) weeks and the birth weight was (3 201±463)g. Of the neonates included, ten were preterm (6.3%) and the minimum gestational age was 30+1 weeks. Six neonates (3.8%) had respiratory difficulty and 4 of them were premature and required mechanical ventilation. All 158 neonates were tested negative for SARS-COV-2 nucleic acid by daily nasal swabs for the first 7 days. A total of 156 mothers (2 cases of twin pregnancy) infected with SARS-CoV-2 Omicron variant, the time from confirmed SARS-CoV-2 infection to delivery was 7 (3, 12) days. Among them, 88 cases (56.4%) showed clinical symptoms, but none needed intensive care treatment. The peripheral white blood cell count of the neonates in maternal symptomatic group was significantly higher than that in maternal symptomatic group (23.0 (18.7, 28.0) × 109 vs. 19.6 (15.4, 36.6) × 109/L, Z=2.44, P<0.05). Conclusions: Neonates of mothers infected with SARS-CoV-2 Omicron variant during third trimester have benign short-term outcomes, without intrauterine infection through vertical transmission. Strict infection control measures at birth and after birth can effectively protect these neonates from SARS-CoV-2 infection.
Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Female , Humans , Infant , Infant, Newborn , Male , Pregnancy , Mothers , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/prevention & control , Retrospective Studies , SARS-CoV-2ABSTRACT
BACKGROUND Despite growing concern regarding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant of concern (VOC), the respiratory and physical functions of patients with delta VOC post-discharge have not been investigated compared to those of patients with ancestral SARS-CoV-2.METHODS Sixty-three discharged patients with coronavirus disease (COVID-19) were included. Patients were divided into delta VOC and ancestral SARS-CoV-2 groups. On Day 14 post-discharge, differences in chest computed tomography, modified Medical Research Council and Borg Dyspnoea Scale scores, and Manual Muscle Test scores were compared. Prognoses of respiratory and physical function were compared between patients who recovered from moderate and severe COVID-19.RESULTS Of the 63 patients, respectively 28 and 35 were in the delta VOC and ancestral SARS-CoV-2 groups. On Day 14 post-discharge, 35 patients (56.5%) had abnormalities on imaging. Visual semi-quantitative scores of both lungs were significantly higher in the severe group. However, there was no difference in this or any other score ratings between the groups.CONCLUSION At 14 days post-discharge, ground glass opacities and pleural thickening were the most common residual findings; no difference in respiratory and physical functions during the convalescence period were noted in patients with SARS-CoV-2 delta VOC and ancestral SARS-CoV-2.
Subject(s)
COVID-19 , SARS-CoV-2 , Aftercare , Humans , Patient DischargeABSTRACT
Objective: To explore the relationship between pathogens in the olfactory cleft area and olfactory disorders in patients with upper respiratory inflammation (URI) during the prevention and control of 2019 novel coronavirus disease (COVID-19). Methods: A total of 234 URI patients including acute upper respiratory infection, chronic rhinosinusitis (CRS), allergic rhinitis (AR) were continuously selected from September 2020 to March 2021 in Beijing Anzhen Hospital and 98 healthy adults were enrolled as controls. The secretions from the olfactory cleft of all subjects were collected with nasal swabs under nasal endoscopy. Multiple real-time fluorescent quantitative polymerase chain reaction detection method was used to detect nucleic acids of 33 types of respiratory pathogenic microorganism. Sniffin' Sticks olfactory test was performed on all patients with URI. URI patients with olfactory dysfunction were followed up for 9 (8, 10) months (M (Q1, Q3)). SPSS 20.0 software was used for statistical analysis. Results: Among the 98 controls, 9 (9.18%) were positive for pathogenic microorganisms, including 1 (1.02%) rhinovirus, 1 (1.02%) parainfluenza virus type 3, 3 (3.06%) enterovirus, 1 (1.02%) staphylococcus aureus and 3 (3.06%) Moraxella catarrhalis. Among the 234 URI patients, 111 (47.44%) had olfactory disorders and 123 (52.56%) had normal sense of smell. In the olfactory disorder group (111 cases), 38 cases (34.23%) were positive for pathogenic microorganisms, and 4 cases (3.60%) were mixed infection, including 11 cases of rhinovirus (9.91%), 5 cases of coronavirus 229E (4.50%), 2 cases of coronavirus OC43/NL63 (1.80%), 3 cases of parainfluenza virus type 1 (2.70%), 2 cases of enterovirus (1.80%), 1 case of influenza B virus type BV (0.90%), 11 cases of Staphylococcus aureus (9.91%), 7 cases of Moraxella catarrhalis (6.31%), and 1 case of Klebsiella pneumoniae (0.90%). In the normal smell group (123 cases), 18 cases (14.63%) were positive for pathogenic microorganisms, and 1 case (0.81%) was mixed infection, including 3 cases of rhinovirus (2.44%), 4 cases of coronavirus 229E (3.25%), 1 case of Influenza virus type 3 (0.81%), 3 cases of enterovirus (2.44%), 3 cases of Staphylococcus aureus (2.44%), 4 cases of Moraxella catarrhalis (3.25%), and 1 case of Klebsiella pneumoniae (0.81%). Univariate analysis between the two groups found that there were significant differences in the detection rate of pathogenic microorganisms, rhinovirus and Staphylococcus aureus between the groups (all P<0.05). The detection rate of parainfluenza virus type 1, Staphylococcus aureus, and rhinovirus were different between the patients with olfactory disorder and normal olfactory function in the three subgroups of acute upper respiratory tract infection, CRS and AR, respectively (χ2 value was 3.88, 4.53 and 4.73, respectively, all P<0.05). During the follow-up period, among the 111 patients with olfactory disorder, 71 (63.96%) patients' olfactory function returned to normal, 32 (28.83%) patients' olfactory function improved but not completely returned to normal, 8 (7.21%) patients' olfactory function did not improve. Conclusions: During the prevention and control of COVID-19, rhinovirus or Staphylococcus aureus infection or colonization of URI patients is closely related to olfactory disorders. Parainfluenza virus type 1 infection can cause relatively persistent olfactory disorders in patients with acute upper respiratory tract infection. Staphylococcus aureus and rhinovirus colonization are related to the occurrence of olfactory dysfunction in CRS and AR patients respectively.
Subject(s)
COVID-19 , Coinfection , Olfaction Disorders , Respiratory Tract Infections , Sinusitis , Adult , Coinfection/epidemiology , Humans , Inflammation , Rhinovirus , SmellABSTRACT
Objective: To investigate the epidemiological characteristics and the transmission chain of a family clustering of COVID-19 cases caused by severe acute respiratory 2019-nCoV Delta variant in Changping district of Beijing. Methods: Epidemiological investigation was conducted and big data were used to reveal the exposure history of the cases. Close contacts were screened according to the investigation results, and human and environmental samples were collected for nucleic acid tests. Positive samples were analyzed by gene sequencing. Results: On November 1, 2021, a total of 5 COVID-19 cases caused by 2019-nCoV Delta variant were reported in a family detected through active screening. The infection source was a person in the same designated isolation hotel where the first case of the family cluster was isolated from 22 to 27, October. The first case was possibly infected through aerosol particles in the ventilation duct system of the isolation hotel. After the isolation discharge on October 27, and the first case caused secondary infections of four family members while living together from October 27 to November 1, 2021. Conclusion: 2019-nCoV Delta variant is prone to cause family cluster, and close attention needs to be paid to virus transmission through ventilation duct system in isolation hotels.