Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Atmosphere ; 13(3):470, 2022.
Article in English | MDPI | ID: covidwho-1742302

ABSTRACT

In this research, a new time-resolved emission inversion system was developed to investigate variations in SO2 emission in China during the COVID-19 (Corona Virus Disease 2019) lockdown period based on a four-dimensional variational (4DVar) inversion method to dynamically optimize the SO2 inventory by assimilating the ground-based hourly observation data. The inversion results obtained were validated in the North China Plain (NCP). Two sets of experiments were carried out based on the original and optimized inventories during the pre-lockdown and lockdown period to quantify the SO2 emission variations and the corresponding prediction improvement. The SO2 emission changes due to the lockdown in the NCP were quantified by the differences in the averaged optimized inventories between the pre-lockdown and lockdown period. As a response to the lockdown control, the SO2 emissions were reduced by 20.1% on average in the NCP, with ratios of 20.7% in Beijing, 20.2% in Tianjin, 26.1% in Hebei, 18.3% in Shanxi, 19.1% in Shandong, and 25.9% in Henan, respectively. These were mainly attributed to the changes caused by the heavy industry lockdown in these areas. Compared to the model performance based on the original inventory, the optimized daily SO2 emission inventory significantly improved the model SO2 predictions during the lockdown period, with the correlation coefficient (R) value increasing from 0.28 to 0.79 and the root-mean-square error (RMSE) being reduced by more than 30%. Correspondingly, the performance of PM2.5 was slightly improved, with R-value increasing from 0.67 to 0.74 and the RMSE being reduced by 8% in the meantime. These statistics indicate the good optimization ability of the time-resolved emission inversion system.

2.
Cell Res ; 31(8): 847-860, 2021 08.
Article in English | MEDLINE | ID: covidwho-1387284

ABSTRACT

Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.


Subject(s)
Antiviral Agents/metabolism , COVID-19/pathology , Coronavirus Envelope Proteins/metabolism , Respiratory Distress Syndrome/etiology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Apoptosis , COVID-19/complications , COVID-19/drug therapy , COVID-19/virology , Coronavirus Envelope Proteins/antagonists & inhibitors , Coronavirus Envelope Proteins/genetics , Cytokines/metabolism , Disease Models, Animal , Half-Life , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutagenesis, Site-Directed , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Spleen/metabolism , Spleen/pathology , Viral Load , Virulence
3.
Acta Pharmacol Sin ; 43(4): 781-787, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1387237

ABSTRACT

Lack of efficiency has been a major problem shared by all currently developed anti-SARS-CoV-2 therapies. Our previous study shows that SARS-CoV-2 structural envelope (2-E) protein forms a type of cation channel, and heterogeneously expression of 2-E channels causes host cell death. In this study we developed a cell-based high throughput screening (HTS) assay and used it to discover inhibitors against 2-E channels. Among 4376 compounds tested, 34 hits with cell protection activity were found. Followed by an anti-viral analysis, 15 compounds which could inhibit SARS-CoV-2 replication were identified. In electrophysiological experiments, three representatives showing inhibitory effect on 2-E channels were chosen for further characterization. Among them, proanthocyanidins directly bound to 2-E channel with binding affinity (KD) of 22.14 µM in surface plasmon resonance assay. Molecular modeling and docking analysis revealed that proanthocyanidins inserted into the pore of 2-E N-terminal vestibule acting as a channel blocker. Consistently, mutations of Glu 8 and Asn 15, two residues lining the proposed binding pocket, abolished the inhibitory effects of proanthocyanidins. The natural product proanthocyanidins are widely used as cosmetic, suggesting a potential of proanthocyanidins as disinfectant for external use. This study further demonstrates that 2-E channel is an effective antiviral drug target and provides a potential antiviral candidate against SARS-CoV-2.


Subject(s)
Antiviral Agents , COVID-19 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , High-Throughput Screening Assays , Humans , Molecular Docking Simulation , SARS-CoV-2
5.
Signal Transduct Target Ther ; 6(1): 300, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1351933

ABSTRACT

Elderly people and patients with comorbidities are at higher risk of COVID-19 infection, resulting in severe complications and high mortality. However, the underlying mechanisms are unclear. In this study, we investigate whether miRNAs in serum exosomes can exert antiviral functions and affect the response to COVID-19 in the elderly and people with diabetes. First, we identified four miRNAs (miR-7-5p, miR-24-3p, miR-145-5p and miR-223-3p) through high-throughput sequencing and quantitative real-time PCR analysis, that are remarkably decreased in the elderly and diabetic groups. We further demonstrated that these miRNAs, either in the exosome or in the free form, can directly inhibit S protein expression and SARS-CoV-2 replication. Serum exosomes from young people can inhibit SARS-CoV-2 replication and S protein expression, while the inhibitory effect is markedly decreased in the elderly and diabetic patients. Moreover, three out of the four circulating miRNAs are significantly increased in the serum of healthy volunteers after 8-weeks' continuous physical exercise. Serum exosomes isolated from these volunteers also showed stronger inhibitory effects on S protein expression and SARS-CoV-2 replication. Our study demonstrates for the first time that circulating exosomal miRNAs can directly inhibit SARS-CoV-2 replication and may provide a possible explanation for the difference in response to COVID-19 between young people and the elderly or people with comorbidities.


Subject(s)
COVID-19/genetics , Diabetes Mellitus/genetics , MicroRNAs/genetics , Spike Glycoprotein, Coronavirus/genetics , Adult , Age Factors , Aged , COVID-19/blood , COVID-19/pathology , COVID-19/virology , China , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Cohort Studies , Diabetes Mellitus/blood , Diabetes Mellitus/pathology , Diabetes Mellitus/virology , Exercise , Exosomes/genetics , Exosomes/metabolism , Exosomes/virology , Female , Gene Expression Regulation , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Male , MicroRNAs/blood , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/blood , Virus Replication
6.
Acta Pharmacol Sin ; 43(4): 788-796, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1343437

ABSTRACT

An epidemic of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading worldwide. SARS-CoV-2 relies on its spike protein to invade host cells by interacting with the human receptor protein Angiotensin-Converting Enzymes 2 (ACE2). Therefore, designing an antibody or small-molecular entry blockers is of great significance for virus prevention and treatment. This study identified five potential small molecular anti-virus blockers via targeting SARS-CoV-2 spike protein by combining in silico technologies with in vitro experimental methods. The five molecules were natural products that binding to the RBD domain of SARS-CoV-2 was qualitatively and quantitively validated by both native Mass Spectrometry (MS) and Surface Plasmon Resonance (SPR). Anti-viral activity assays showed that the optimal molecule, H69C2, had a strong binding affinity (dissociation constant KD) of 0.0947 µM and anti-virus IC50 of 85.75 µM.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , COVID-19/drug therapy , Humans , Protein Binding , SARS-CoV-2
8.
Cell Res ; 31(8): 847-860, 2021 08.
Article in English | MEDLINE | ID: covidwho-1265947

ABSTRACT

Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.


Subject(s)
Antiviral Agents/metabolism , COVID-19/pathology , Coronavirus Envelope Proteins/metabolism , Respiratory Distress Syndrome/etiology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Apoptosis , COVID-19/complications , COVID-19/drug therapy , COVID-19/virology , Coronavirus Envelope Proteins/antagonists & inhibitors , Coronavirus Envelope Proteins/genetics , Cytokines/metabolism , Disease Models, Animal , Half-Life , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutagenesis, Site-Directed , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Spleen/metabolism , Spleen/pathology , Viral Load , Virulence
10.
Acta Pharmacol Sin ; 43(2): 483-493, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1205431

ABSTRACT

The COVID-19, caused by SARS-CoV-2, is threatening public health, and there is no effective treatment. In this study, we have implemented a multi-targeted anti-viral drug design strategy to discover highly potent SARS-CoV-2 inhibitors, which simultaneously act on the host ribosome, viral RNA as well as RNA-dependent RNA polymerases, and nucleocapsid protein of the virus, to impair viral translation, frameshifting, replication, and assembly. Driven by this strategy, three alkaloids, including lycorine, emetine, and cephaeline, were discovered to inhibit SARS-CoV-2 with EC50 values of low nanomolar levels potently. The findings in this work demonstrate the feasibility of this multi-targeting drug design strategy and provide a rationale for designing more potent anti-virus drugs.


Subject(s)
Antiviral Agents/pharmacology , Drug Design , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Chlorocebus aethiops , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
11.
Cell Rep ; 34(7): 108761, 2021 02 16.
Article in English | MEDLINE | ID: covidwho-1062276

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a current global health threat caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging evidence indicates that SARS-CoV-2 elicits a dysregulated immune response and a delayed interferon (IFN) expression in patients, which contribute largely to the viral pathogenesis and development of COVID-19. However, underlying mechanisms remain to be elucidated. Here, we report the activation and repression of the innate immune response by SARS-CoV-2. We show that SARS-CoV-2 RNA activates the RIG-I-MAVS-dependent IFN signaling pathway. We further uncover that ORF9b immediately accumulates and antagonizes the antiviral type I IFN response during SARS-CoV-2 infection on primary human pulmonary alveolar epithelial cells. ORF9b targets the nuclear factor κB (NF-κB) essential modulator NEMO and interrupts its K63-linked polyubiquitination upon viral stimulation, thereby inhibiting the canonical IκB kinase alpha (IKKα)/ß/γ-NF-κB signaling and subsequent IFN production. Our findings thus unveil the innate immunosuppression by ORF9b and provide insights into the host-virus interplay during the early stage of SARS-CoV-2 infection.


Subject(s)
Coronavirus Nucleocapsid Proteins/genetics , I-kappa B Kinase/metabolism , SARS-CoV-2/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , COVID-19/immunology , COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , HEK293 Cells , Humans , Immunity, Innate/immunology , Interferon Type I/metabolism , Interferons/metabolism , NF-kappa B/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Primary Cell Culture , Receptors, Retinoic Acid/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Signal Transduction , Ubiquitination
12.
Cell Discov ; 6(1): 96, 2020 Dec 22.
Article in English | MEDLINE | ID: covidwho-989763

ABSTRACT

The coronavirus disease (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread to >200 countries posing a global public health concern. Patients with comorbidity, such as hypertension suffer more severe infection with elevated mortality. The development of effective antiviral drugs is in urgent need to treat COVID-19 patients. Here, we report that calcium channel blockers (CCBs), a type of antihypertensive drug that is widely used in clinics, inhibited the post-entry replication events of SARS-CoV-2 in vitro, while no in vitro anti-SARS-CoV-2 effect was observed for the two other major types of antihypertensive drugs, namely, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers. CCB combined with chloroquine showed a significantly enhanced anti-SARS-CoV-2 efficacy. A retrospective clinical investigation on hospitalized COVID-19 patients with hypertension as the only comorbidity revealed that the CCB amlodipine besylate therapy was associated with a decreased case fatality rate. The results from this study suggest that CCB administration to COVID-19 patients with hypertension as the comorbidity might improve the disease outcome.

13.
Clin Infect Dis ; 72(4): 626-633, 2021 02 16.
Article in English | MEDLINE | ID: covidwho-851733

ABSTRACT

BACKGROUND: Patients with coronavirus disease 2019 (COVID-19) experience a wide clinical spectrum, with over 2% developing fatal outcome. The prognostic factors for fatal outcome remain sparsely investigated. METHODS: A retrospective cohort study was performed in a cohort of patients with confirmed COVID-19 in one designated hospital in Wuhan, China, from 17 January-5 March 2020. The laboratory parameters and a panel of cytokines were consecutively evaluated until patients' discharge or death. The laboratory features that could be used to predict fatal outcome were identified. RESULTS: Consecutively collected data on 55 laboratory parameters and cytokines from 642 patients with COVID-19 were profiled along the entire disease course, based on which 3 clinical stages (acute stage, days 1-9; critical stage, days 10-15; and convalescence stage, day 15 to observation end) were determined. Laboratory findings based on 75 deceased and 357 discharged patients revealed that, at the acute stage, fatality could be predicted by older age and abnormal lactate dehydrogenase (LDH), urea, lymphocyte count, and procalcitonin (PCT) level. At the critical stage, the fatal outcome could be predicted by age and abnormal PCT, LDH, cholinesterase, lymphocyte count, and monocyte percentage. Interleukin 6 (IL-6) was remarkably elevated, with fatal cases having a more robust production than discharged cases across the whole observation period. LDH, PCT, lymphocytes, and IL-6 were considered highly important prognostic factors for COVID-19-related death. CONCLUSIONS: The identification of predictors that were routinely tested might allow early identification of patients at high risk of death for early aggressive intervention.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , COVID-19/mortality , China/epidemiology , Humans , Laboratories , Prognosis , Retrospective Studies
14.
Acta Pharmacol Sin ; 41(9): 1167-1177, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-691161

ABSTRACT

Human infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and there is no cure currently. The 3CL protease (3CLpro) is a highly conserved protease which is indispensable for CoVs replication, and is a promising target for development of broad-spectrum antiviral drugs. In this study we investigated the anti-SARS-CoV-2 potential of Shuanghuanglian preparation, a Chinese traditional patent medicine with a long history for treating respiratory tract infection in China. We showed that either the oral liquid of Shuanghuanglian, the lyophilized powder of Shuanghuanglian for injection or their bioactive components dose-dependently inhibited SARS-CoV-2 3CLpro as well as the replication of SARS-CoV-2 in Vero E6 cells. Baicalin and baicalein, two ingredients of Shuanghuanglian, were characterized as the first noncovalent, nonpeptidomimetic inhibitors of SARS-CoV-2 3CLpro and exhibited potent antiviral activities in a cell-based system. Remarkably, the binding mode of baicalein with SARS-CoV-2 3CLpro determined by X-ray protein crystallography was distinctly different from those of known 3CLpro inhibitors. Baicalein was productively ensconced in the core of the substrate-binding pocket by interacting with two catalytic residues, the crucial S1/S2 subsites and the oxyanion loop, acting as a "shield" in front of the catalytic dyad to effectively prevent substrate access to the catalytic dyad within the active site. Overall, this study provides an example for exploring the in vitro potency of Chinese traditional patent medicines and effectively identifying bioactive ingredients toward a specific target, and gains evidence supporting the in vivo studies of Shuanghuanglian oral liquid as well as two natural products for COVID-19 treatment.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections , Drugs, Chinese Herbal , Flavanones , Flavonoids , Pandemics , Pneumonia, Viral , Virus Replication/drug effects , Administration, Oral , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Enzyme Assays , Flavanones/chemistry , Flavanones/pharmacokinetics , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Humans , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells , Virus Replication/physiology
16.
Science ; 368(6497): 1331-1335, 2020 06 19.
Article in English | MEDLINE | ID: covidwho-108792

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the etiological agent responsible for the global COVID-19 (coronavirus disease 2019) outbreak. The main protease of SARS-CoV-2, Mpro, is a key enzyme that plays a pivotal role in mediating viral replication and transcription. We designed and synthesized two lead compounds (11a and 11b) targeting Mpro Both exhibited excellent inhibitory activity and potent anti-SARS-CoV-2 infection activity. The x-ray crystal structures of SARS-CoV-2 Mpro in complex with 11a or 11b, both determined at a resolution of 1.5 angstroms, showed that the aldehyde groups of 11a and 11b are covalently bound to cysteine 145 of Mpro Both compounds showed good pharmacokinetic properties in vivo, and 11a also exhibited low toxicity, which suggests that these compounds are promising drug candidates.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/enzymology , Drug Design , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , COVID-19 , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Cysteine Endopeptidases , Dogs , Drug Evaluation, Preclinical , Female , Humans , Male , Mice , Molecular Structure , Pandemics , Pneumonia, Viral/drug therapy , Protein Structure, Tertiary , Rats, Sprague-Dawley , SARS-CoV-2 , Toxicity Tests , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL