ABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been an unprecedented public health disaster in human history, and its spike (S) protein is the major target for vaccines and antiviral drug development. Although widespread vaccination has been well established, the viral gene is prone to rapid mutation, resulting in multiple global spread waves. Therefore, specific antivirals are needed urgently, especially those against variants. In this study, the domain of the receptor binding motif (RBM) and fusion peptide (FP) (amino acids [aa] 436 to 829; denoted RBMFP) of the SARS-CoV-2 S protein was expressed as a recombinant RBMFP protein in Escherichia coli and identified as being immunogenic and antigenically active. Then, the RBMFP proteins were used for phage display to screen the novel affibody. After prokaryotic expression and selection, four novel affibody molecules (Z14, Z149, Z171, and Z327) were obtained. Through surface plasmon resonance (SPR) and pseudovirus neutralization assay, we showed that affibody molecules specifically bind to the RBMFP protein with high affinity and neutralize against SARS-CoV-2 pseudovirus infection. Especially, Z14 and Z171 displayed strong neutralizing activities against Delta and Omicron variants. Molecular docking predicted that affibody molecule interaction sites with RBM overlapped with ACE2. Thus, the novel affibody molecules could be further developed as specific neutralization agents against SARS-CoV-2 variants. IMPORTANCE SARS-CoV-2 and its variants are threatening the whole world. Although a full dose of vaccine injection showed great preventive effects and monoclonal antibody reagents have also been used for a specific treatment, the global pandemic persists. So, developing new vaccines and specific agents are needed urgently. In this work, we expressed the recombinant RBMFP protein as an antigen, identified its antigenicity, and used it as an antigen for affibody phage-display selection. After the prokaryotic expression, the specific affibody molecules were obtained and tested for pseudovirus neutralization. Results showed that the serum antibody induced by RBMFP neutralized Omicron variants. The screened affibody molecules specifically bound the RBMFP of SARS-CoV-2 with high affinity and neutralized the Delta and Omicron pseudovirus in vitro. So, the RBMFP induced serum provides neutralizing effects against pseudovirus in vitro, and the affibodies have the potential to be developed into specific prophylactic agents for SARS-CoV-2 and its variants.
Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Molecular Docking Simulation , Neutralization Tests/methods , Recombinant Proteins , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunologyABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been an unprecedented public health disaster in human history, and its spike (S) protein is the major target for vaccines and antiviral drug development. Although widespread vaccination has been well established, the viral gene is prone to rapid mutation, resulting in multiple global spread waves. Therefore, specific antivirals are needed urgently, especially those against variants. In this study, the domain of the receptor binding motif (RBM) and fusion peptide (FP) (amino acids [aa] 436 to 829; denoted RBMFP) of the SARS-CoV-2 S protein was expressed as a recombinant RBMFP protein in Escherichia coli and identified as being immunogenic and antigenically active. Then, the RBMFP proteins were used for phage display to screen the novel affibody. After prokaryotic expression and selection, four novel affibody molecules (Z14, Z149, Z171, and Z327) were obtained. Through surface plasmon resonance (SPR) and pseudovirus neutralization assay, we showed that affibody molecules specifically bind to the RBMFP protein with high affinity and neutralize against SARS-CoV-2 pseudovirus infection. Especially, Z14 and Z171 displayed strong neutralizing activities against Delta and Omicron variants. Molecular docking predicted that affibody molecule interaction sites with RBM overlapped with ACE2. Thus, the novel affibody molecules could be further developed as specific neutralization agents against SARS-CoV-2 variants. IMPORTANCE SARS-CoV-2 and its variants are threatening the whole world. Although a full dose of vaccine injection showed great preventive effects and monoclonal antibody reagents have also been used for a specific treatment, the global pandemic persists. So, developing new vaccines and specific agents are needed urgently. In this work, we expressed the recombinant RBMFP protein as an antigen, identified its antigenicity, and used it as an antigen for affibody phage-display selection. After the prokaryotic expression, the specific affibody molecules were obtained and tested for pseudovirus neutralization. Results showed that the serum antibody induced by RBMFP neutralized Omicron variants. The screened affibody molecules specifically bound the RBMFP of SARS-CoV-2 with high affinity and neutralized the Delta and Omicron pseudovirus in vitro. So, the RBMFP induced serum provides neutralizing effects against pseudovirus in vitro, and the affibodies have the potential to be developed into specific prophylactic agents for SARS-CoV-2 and its variants.
Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Molecular Docking Simulation , Neutralization Tests/methods , Recombinant Proteins , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunologyABSTRACT
BACKGROUND: SARS-CoV-2 has spread worldwide causing more than 400 million people with virus infections since early 2020. Currently, the existing vaccines targeting the spike glycoprotein (S protein) of SARS-CoV-2 are facing great challenge from the infection of SARS-CoV-2 virus and its multiple S protein variants. Thus, we need to develop a new generation of vaccines to prevent infection of the SARS-CoV-2 variants. Compared with the S protein, the nucleocapsid protein (N protein) of SARS-CoV-2 is more conservative and less mutations, which also plays a vital role in viral infection. Therefore, the N protein may have the great potential for developing new vaccines. METHODS: The N protein of SARS-CoV-2 was recombinantly expressed and purified in Escherichia coli. Western Blot and ELISA assays were used to demonstrate the immunoreactivity of the recombinant N protein with the serum of 22 COVID-19 patients. We investigated further the response of the specific serum antibodies and cytokine production in BALB/c mice immunized with recombinant N protein by Western Blot and ELISA. RESULTS: The N protein had good immunoreactivity and the production of IgG antibody against N protein in COVID-19 patients was tightly correlated with disease severity. Furthermore, the N protein was used to immunize BALB/c mice to have elicited strong immune responses. Not only high levels of IgG antibody, but also cytokine-IFN-γ were produced in the N protein-immunized mice. Importantly, the N protein immunization induced a high level of IgM antibody produced in the mice. CONCLUSION: SARS-CoV-2 N protein shows a great big bundle of potentiality for developing a new generation of vaccines in fighting infection of SARS-CoV-2 and its variants.