Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article in English | MEDLINE | ID: covidwho-1555255

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), binds to host receptor angiotensin-converting enzyme 2 (ACE2) through its spike (S) glycoprotein, which mediates membrane fusion and viral entry. However, the expression of ACE2 is extremely low in a variety of human tissues, especially in the airways. Thus, other coreceptors and/or cofactors on the surface of host cells may contribute to SARS-CoV-2 infection. Here, we identified nonmuscle myosin heavy chain IIA (MYH9) as an important host factor for SARS-CoV-2 infection of human pulmonary cells by using APEX2 proximity-labeling techniques. Genetic ablation of MYH9 significantly reduced SARS-CoV-2 pseudovirus infection in wild type (WT) A549 and Calu-3 cells, and overexpression of MYH9 enhanced the pseudovirus infection in WT A549 and H1299 cells. MYH9 was colocalized with the SARS-CoV-2 S and directly interacted with SARS-CoV-2 S through the S2 subunit and S1-NTD (N-terminal domain) by its C-terminal domain (designated as PRA). Further experiments suggested that endosomal or myosin inhibitors effectively block the viral entry of SARS-CoV-2 into PRA-A549 cells, while transmembrane protease serine 2 (TMPRSS2) and cathepsin B and L (CatB/L) inhibitors do not, indicating that MYH9 promotes SARS-CoV-2 endocytosis and bypasses TMPRSS2 and CatB/L pathway. Finally, we demonstrated that loss of MYH9 reduces authentic SARS-CoV-2 infection in Calu-3, ACE2-A549, and ACE2-H1299 cells. Together, our results suggest that MYH9 is a candidate host factor for SARS-CoV-2, which mediates the virus entering host cells by endocytosis in an ACE2-dependent manner, and may serve as a potential target for future clinical intervention strategies.

2.
Cell Discov ; 7(1): 60, 2021 Aug 04.
Article in English | MEDLINE | ID: covidwho-1541177

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) is often indicated by lymphopenia and increased myelopoiesis; however, the underlying mechanism is still unclear, especially the alteration of hematopoiesis. It is important to explore to what extent and how hematopoietic stem cells contribute to the impairment of peripheral lymphoid and myeloid compartments in COVID-19 patients. In this study, we used single-cell RNA sequencing to assess bone marrow mononuclear cells from COVID-19 patients with peripheral blood mononuclear cells as control. The results showed that the hematopoietic stem cells in these patients were mainly in the G1 phase and prone to apoptosis, with immune activation and anti-viral responses. Importantly, a significant accumulation of immature myeloid progenitors and a dramatic reduction of lymphoid progenitors in severe cases were identified, along with the up-regulation of transcription factors (such as SPI1, LMO4, ETS2, FLI1, and GATA2) that are important for the hematopoietic stem cell or multipotent progenitor to differentiate into downstream progenitors. Our results indicate a dysregulated hematopoiesis in patients with severe COVID-19.

4.
Gigascience ; 10(9)2021 09 28.
Article in English | MEDLINE | ID: covidwho-1443047

ABSTRACT

BACKGROUND: B-cell immunoglobulin repertoires with paired heavy and light chain can be determined by means of 10X single-cell V(D)J sequencing. Precise and quick analysis of 10X single-cell immunoglobulin repertoires remains a challenge owing to the high diversity of immunoglobulin repertoires and a lack of specialized software that can analyze such diverse data. FINDINGS: In this study, specialized software for 10X single-cell immunoglobulin repertoire analysis was developed. SCIGA (Single-Cell Immunoglobulin Repertoire Analysis) is an easy-to-use pipeline that performs read trimming, immunoglobulin sequence assembly and annotation, heavy and light chain pairing, statistical analysis, visualization, and multiple sample integration analysis, which is all achieved by using a 1-line command. Then SCIGA was used to profile the single-cell immunoglobulin repertoires of 9 patients with coronavirus disease 2019 (COVID-19). Four neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were identified from these repertoires. CONCLUSIONS: SCIGA provides a complete and quick analysis for 10X single-cell V(D)J sequencing datasets. It can help researchers to interpret B-cell immunoglobulin repertoires with paired heavy and light chain.


Subject(s)
Immunoglobulins/metabolism , Single-Cell Analysis/methods , Software , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , COVID-19/pathology , COVID-19/virology , Humans , Immunoglobulins/chemistry , Immunoglobulins/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
5.
Cell Discov ; 7(1): 89, 2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1440469

ABSTRACT

SARS-CoV-2 outbreak has been declared by World Health Organization as a worldwide pandemic. However, there are many unknowns about the antigen-specific T-cell-mediated immune responses to SARS-CoV-2 infection. Here, we present both single-cell TCR-seq and RNA-seq to analyze the dynamics of TCR repertoire and immune metabolic functions of blood T cells collected from recently discharged COVID-19 patients. We found that while the diversity of TCR repertoire was increased in discharged patients, it returned to basal level ~1 week after becoming virus-free. The dynamics of T cell repertoire correlated with a profound shift of gene signatures from antiviral response to metabolism adaptation. We also demonstrated that the top expanded T cell clones (~10% of total T cells) display the key anti-viral features in CD8+ T cells, confirming a critical role of antigen-specific T cells in fighting against SARS-CoV-2. Our work provides a basis for further analysis of adaptive immunity in COVID-19 patients, and also has implications in developing a T-cell-based vaccine for SARS-CoV-2.

6.
Cell Mol Immunol ; 18(10): 2313-2324, 2021 10.
Article in English | MEDLINE | ID: covidwho-1392820

ABSTRACT

In response to emerging infectious diseases, such as the recent pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is critical to quickly identify and understand responsible pathogens, risk factors, host immune responses, and pathogenic mechanisms at both the molecular and cellular levels. The recent development of multiomic technologies, including genomics, proteomics, metabolomics, and single-cell transcriptomics, has enabled a fast and panoramic grasp of the pathogen and the disease. Here, we systematically reviewed the major advances in the virology, immunology, and pathogenic mechanisms of SARS-CoV-2 infection that have been achieved via multiomic technologies. Based on well-established cohorts, omics-based methods can greatly enhance the mechanistic understanding of diseases, contributing to the development of new diagnostics, drugs, and vaccines for emerging infectious diseases, such as COVID-19.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , Genomics , Metabolomics , COVID-19/immunology , COVID-19/pathology , Host-Pathogen Interactions , Humans , Pandemics , SARS-CoV-2/physiology , Single-Cell Analysis , Transcriptome
7.
J Immunol ; 207(7): 1848-1856, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1377034

ABSTRACT

Immune cell responses are strikingly altered in patients with severe coronavirus disease 2019 (COVID-19), but the immunoregulatory process in these individuals is not fully understood. In this study, 23 patients with mild and 22 patients with severe COVID-19 and 6 asymptomatic carriers of COVID-19 were enrolled, along with 44 healthy controls (HC). Peripheral immune cells in HC and patients with COVID-19 were comprehensively profiled using mass cytometry. We found that in patients with severe COVID-19, the number of HLA-DRlow/- monocytes was significantly increased, but that of mucosal-associated invariant T (MAIT) cells was greatly reduced. MAIT cells were highly activated but functionally impaired in response to Escherichia coli and IL-12/IL-18 stimulation in patients with severe COVID-19, especially those with microbial coinfection. Single-cell transcriptome analysis revealed that IFN-stimulated genes were significantly upregulated in peripheral MAIT cells and monocytes from patients with severe COVID-19. IFN-α pretreatment suppressed MAIT cells' response to E. coli by triggering high levels of IL-10 production by HLA-DRlow/--suppressive monocytes. Blocking IFN-α or IL-10 receptors rescued MAIT cell function in patients with severe COVID-19. Moreover, plasma from patients with severe COVID-19 inhibited HLA-DR expression by monocytes through IL-10. These data indicate a unique pattern of immune dysregulation in severe COVID-19, which is characterized by enrichment of suppressive HLA-DRlow/- monocytes associated with functional impairment of MAIT cells through the IFN/IL-10 pathway.


Subject(s)
COVID-19/immunology , Escherichia coli Infections/immunology , Escherichia coli/physiology , Interleukin-10/metabolism , Monocytes/immunology , Mucosal-Associated Invariant T Cells/immunology , SARS-CoV-2/physiology , Adolescent , Adult , Asymptomatic Diseases , Cells, Cultured , Child , Coinfection , Disease Progression , Female , Humans , Immune Tolerance , Lymphocyte Activation , Male , Middle Aged , Severity of Illness Index , Young Adult
9.
J Immunol ; 2021 May 28.
Article in English | MEDLINE | ID: covidwho-1248084

ABSTRACT

The relatively low partial pressure of oxygen, reduced oxygen saturation, and aberrant plasma metabolites in COVID-19 may alter energy metabolism in peripheral immune cells. However, little is known regarding the immunometabolic defects of T cells in COVID-19 patients, which may contribute to the deregulated immune functions of these cells. In this study, we longitudinally characterized the metabolic profiles of resting and activated T cells from acutely infected and convalescent COVID-19 patients by flow cytometry and confirmed the metabolic profiles with a Seahorse analyzer. Non-COVID-19 and healthy subjects were enrolled as controls. We found that ex vivo T cells from acutely infected COVID-19 patients were highly activated and apoptotic and displayed more extensive mitochondrial metabolic dysfunction, especially cells in CD8+ T cell lineages, than those from convalescent COVID-19 patients or healthy controls, but slightly disturbed mitochondrial metabolic activity was observed in non-COVID-19 patients. Importantly, plasma IL-6 and C-reactive protein (CRP) levels positively correlated with mitochondrial mass and negatively correlated with fatty acid uptake in T cells from COVID-19 patients. Additionally, compared with those from healthy controls, in vitro-activated T cells from acutely infected COVID-19 patients showed signs of lower glycolysis, a reduced glycolytic capacity, and a decreased glycolytic reserve, accompanied by lower activation of mTOR signaling. Thus, newly identified defects in T cell mitochondrial metabolic functions and metabolic reprogramming upon activation might contribute to immune deficiency in COVID-19.

10.
Virulence ; 12(1): 1209-1226, 2021 12.
Article in English | MEDLINE | ID: covidwho-1242086

ABSTRACT

New SARS-CoV-2 mutants have been continuously indentified with enhanced transmission ever since its outbreak in early 2020. As an RNA virus, SARS-CoV-2 has a high mutation rate due to the low fidelity of RNA polymerase. To study the single nucleotide polymorphisms (SNPs) dynamics of SARS-CoV-2, 158 SNPs with high confidence were identified by deep meta-transcriptomic sequencing, and the most common SNP type was C > T. Analyses of intra-host population diversity revealed that intra-host quasispecies' composition varies with time during the early onset of symptoms, which implicates viral evolution during infection. Network analysis of co-occurring SNPs revealed the most abundant non-synonymous SNP 22,638 in the S glycoprotein RBD region and 28,144 in the ORF8 region. Furthermore, SARS-CoV-2 variations differ in an individual's respiratory tissue (nose, throat, BALF, or sputum), suggesting independent compartmentalization of SARS-CoV-2 populations in patients. The positive selection analysis of the SARS-CoV-2 genome uncovered the positive selected amino acid G251V on ORF3a. Alternative allele frequency spectrum (AAFS) of all variants revealed that ORF8 could bear alternate alleles with high frequency. Overall, the results show the quasispecies' profile of SARS-CoV-2 in the respiratory tract in the first two months after the outbreak.


Subject(s)
Phylogeny , Polymorphism, Single Nucleotide , Quasispecies , SARS-CoV-2/classification , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , Alleles , COVID-19/virology , Computational Biology , Coronavirus Envelope Proteins/chemistry , Coronavirus Envelope Proteins/genetics , Female , Gene Frequency , Genome, Viral , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Severity of Illness Index , Young Adult
12.
Cell Discov ; 6: 73, 2020.
Article in English | MEDLINE | ID: covidwho-889178

ABSTRACT

Understanding the mechanism that leads to immune dysfunction in severe coronavirus disease 2019 (COVID-19) is crucial for the development of effective treatment. Here, using single-cell RNA sequencing, we characterized the peripheral blood mononuclear cells (PBMCs) from uninfected controls and COVID-19 patients and cells in paired broncho-alveolar lavage fluid (BALF). We found a close association of decreased dendritic cells (DCs) and increased monocytes resembling myeloid-derived suppressor cells (MDSCs), which correlated with lymphopenia and inflammation in the blood of severe COVID-19 patients. Those MDSC-like monocytes were immune-paralyzed. In contrast, monocyte-macrophages in BALFs of COVID-19 patients produced massive amounts of cytokines and chemokines, but secreted little interferons. The frequencies of peripheral T cells and NK cells were significantly decreased in severe COVID-19 patients, especially for innate-like T and various CD8+ T cell subsets, compared to healthy controls. In contrast, the proportions of various activated CD4+ T cell subsets among the T cell compartment, including Th1, Th2, and Th17-like cells were increased and more clonally expanded in severe COVID-19 patients. Patients' peripheral T cells showed no sign of exhaustion or augmented cell death, whereas T cells in BALFs produced higher levels of IFNG, TNF, CCL4, CCL5, etc. Paired TCR tracking indicated abundant recruitment of peripheral T cells to the severe patients' lung. Together, this study comprehensively depicts how the immune cell landscape is perturbed in severe COVID-19.

13.
Cell ; 181(7): 1475-1488.e12, 2020 06 25.
Article in English | MEDLINE | ID: covidwho-464128

ABSTRACT

Viruses are a constant threat to global health as highlighted by the current COVID-19 pandemic. Currently, lack of data underlying how the human host interacts with viruses, including the SARS-CoV-2 virus, limits effective therapeutic intervention. We introduce Viral-Track, a computational method that globally scans unmapped single-cell RNA sequencing (scRNA-seq) data for the presence of viral RNA, enabling transcriptional cell sorting of infected versus bystander cells. We demonstrate the sensitivity and specificity of Viral-Track to systematically detect viruses from multiple models of infection, including hepatitis B virus, in an unsupervised manner. Applying Viral-Track to bronchoalveloar-lavage samples from severe and mild COVID-19 patients reveals a dramatic impact of the virus on the immune system of severe patients compared to mild cases. Viral-Track detects an unexpected co-infection of the human metapneumovirus, present mainly in monocytes perturbed in type-I interferon (IFN)-signaling. Viral-Track provides a robust technology for dissecting the mechanisms of viral-infection and pathology.


Subject(s)
Coronavirus Infections/physiopathology , Host-Pathogen Interactions , Pneumonia, Viral/physiopathology , Software , Animals , Betacoronavirus/isolation & purification , COVID-19 , Coinfection/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Interferons/immunology , Lung/pathology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Sensitivity and Specificity , Sequence Analysis, RNA , Severity of Illness Index , Single-Cell Analysis
14.
Nature ; 584(7819): 115-119, 2020 08.
Article in English | MEDLINE | ID: covidwho-381745

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a global health emergency that is in urgent need of intervention1-3. The entry of SARS-CoV-2 into its target cells depends on binding between the receptor-binding domain (RBD) of the viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2)2,4-6. Here we report the isolation and characterization of 206 RBD-specific monoclonal antibodies derived from single B cells from 8 individuals infected with SARS-CoV-2. We identified antibodies that potently neutralize SARS-CoV-2; this activity correlates with competition with ACE2 for binding to RBD. Unexpectedly, the anti-SARS-CoV-2 antibodies and the infected plasma did not cross-react with the RBDs of SARS-CoV or Middle East respiratory syndrome-related coronavirus (MERS-CoV), although there was substantial plasma cross-reactivity to their trimeric spike proteins. Analysis of the crystal structure of RBD-bound antibody revealed that steric hindrance inhibits viral engagement with ACE2, thereby blocking viral entry. These findings suggest that anti-RBD antibodies are largely viral-species-specific inhibitors. The antibodies identified here may be candidates for development of clinical interventions against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Betacoronavirus/chemistry , COVID-19 , Child , Clone Cells/cytology , Clone Cells/immunology , Cross Reactions , Crystallization , Crystallography, X-Ray , Female , Humans , Male , Middle Aged , Models, Molecular , Neutralization Tests , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Plasma/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
15.
Nat Med ; 26(6): 842-844, 2020 06.
Article in English | MEDLINE | ID: covidwho-244490

ABSTRACT

Respiratory immune characteristics associated with Coronavirus Disease 2019 (COVID-19) severity are currently unclear. We characterized bronchoalveolar lavage fluid immune cells from patients with varying severity of COVID-19 and from healthy people by using single-cell RNA sequencing. Proinflammatory monocyte-derived macrophages were abundant in the bronchoalveolar lavage fluid from patients with severe COVID-9. Moderate cases were characterized by the presence of highly clonally expanded CD8+ T cells. This atlas of the bronchoalveolar immune microenvironment suggests potential mechanisms underlying pathogenesis and recovery in COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Single-Cell Analysis , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2
16.
Biochem Biophys Res Commun ; 526(1): 135-140, 2020 05 21.
Article in English | MEDLINE | ID: covidwho-9823

ABSTRACT

The new coronavirus (SARS-CoV-2) outbreak from December 2019 in Wuhan, Hubei, China, has been declared a global public health emergency. Angiotensin I converting enzyme 2 (ACE2), is the host receptor by SARS-CoV-2 to infect human cells. Although ACE2 is reported to be expressed in lung, liver, stomach, ileum, kidney and colon, its expressing levels are rather low, especially in the lung. SARS-CoV-2 may use co-receptors/auxiliary proteins as ACE2 partner to facilitate the virus entry. To identify the potential candidates, we explored the single cell gene expression atlas including 119 cell types of 13 human tissues and analyzed the single cell co-expression spectrum of 51 reported RNA virus receptors and 400 other membrane proteins. Consistent with other recent reports, we confirmed that ACE2 was mainly expressed in lung AT2, liver cholangiocyte, colon colonocytes, esophagus keratinocytes, ileum ECs, rectum ECs, stomach epithelial cells, and kidney proximal tubules. Intriguingly, we found that the candidate co-receptors, manifesting the most similar expression patterns with ACE2 across 13 human tissues, are all peptidases, including ANPEP, DPP4 and ENPEP. Among them, ANPEP and DPP4 are the known receptors for human CoVs, suggesting ENPEP as another potential receptor for human CoVs. We also conducted "CellPhoneDB" analysis to understand the cell crosstalk between CoV-targets and their surrounding cells across different tissues. We found that macrophages frequently communicate with the CoVs targets through chemokine and phagocytosis signaling, highlighting the importance of tissue macrophages in immune defense and immune pathogenesis.


Subject(s)
Betacoronavirus/physiology , Receptors, Virus/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Macrophages/metabolism , Organ Specificity , Pandemics , Peptide Hydrolases/genetics , Peptide Hydrolases/isolation & purification , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Receptors, Virus/isolation & purification , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...