Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cell ; 181(7): 1475-1488.e12, 2020 06 25.
Article in English | MEDLINE | ID: covidwho-464128

ABSTRACT

Viruses are a constant threat to global health as highlighted by the current COVID-19 pandemic. Currently, lack of data underlying how the human host interacts with viruses, including the SARS-CoV-2 virus, limits effective therapeutic intervention. We introduce Viral-Track, a computational method that globally scans unmapped single-cell RNA sequencing (scRNA-seq) data for the presence of viral RNA, enabling transcriptional cell sorting of infected versus bystander cells. We demonstrate the sensitivity and specificity of Viral-Track to systematically detect viruses from multiple models of infection, including hepatitis B virus, in an unsupervised manner. Applying Viral-Track to bronchoalveloar-lavage samples from severe and mild COVID-19 patients reveals a dramatic impact of the virus on the immune system of severe patients compared to mild cases. Viral-Track detects an unexpected co-infection of the human metapneumovirus, present mainly in monocytes perturbed in type-I interferon (IFN)-signaling. Viral-Track provides a robust technology for dissecting the mechanisms of viral-infection and pathology.


Subject(s)
Coronavirus Infections/physiopathology , Host-Pathogen Interactions , Pneumonia, Viral/physiopathology , Software , Animals , Betacoronavirus/isolation & purification , Coinfection/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Interferons/immunology , Lung/pathology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Sensitivity and Specificity , Sequence Analysis, RNA , Severity of Illness Index , Single-Cell Analysis
2.
Nature ; 2020 May 26.
Article in English | MEDLINE | ID: covidwho-381745

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a global health emergency that is in urgent need of intervention1-3. The entry of SARS-CoV-2 into its target cells depends on binding between the receptor-binding domain (RBD) of the viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2)2,4-6. Here we report the isolation and characterization of 206 RBD-specific monoclonal antibodies derived from single B cells from 8 individuals infected with SARS-CoV-2. We identified antibodies that potently neutralize SARS-CoV-2; this activity correlates with competition with ACE2 for binding to RBD. Unexpectedly, the anti-SARS-CoV-2 antibodies and the infected plasma did not cross-react with the RBDs of SARS-CoV or Middle East respiratory syndrome-related coronavirus (MERS-CoV), although there was substantial plasma cross-reactivity to their trimeric spike proteins. Analysis of the crystal structure of RBD-bound antibody revealed that steric hindrance inhibits viral engagement with ACE2, thereby blocking viral entry. These findings suggest that anti-RBD antibodies are largely viral-species-specific inhibitors. The antibodies identified here may be candidates for development of clinical interventions against SARS-CoV-2.

3.
Nat Med ; 26(6): 842-844, 2020 06.
Article in English | MEDLINE | ID: covidwho-244490

ABSTRACT

Respiratory immune characteristics associated with Coronavirus Disease 2019 (COVID-19) severity are currently unclear. We characterized bronchoalveolar lavage fluid immune cells from patients with varying severity of COVID-19 and from healthy people by using single-cell RNA sequencing. Proinflammatory monocyte-derived macrophages were abundant in the bronchoalveolar lavage fluid from patients with severe COVID-9. Moderate cases were characterized by the presence of highly clonally expanded CD8+ T cells. This atlas of the bronchoalveolar immune microenvironment suggests potential mechanisms underlying pathogenesis and recovery in COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Single-Cell Analysis , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology
4.
Biochem Biophys Res Commun ; 526(1): 135-140, 2020 05 21.
Article in English | MEDLINE | ID: covidwho-9823

ABSTRACT

The new coronavirus (SARS-CoV-2) outbreak from December 2019 in Wuhan, Hubei, China, has been declared a global public health emergency. Angiotensin I converting enzyme 2 (ACE2), is the host receptor by SARS-CoV-2 to infect human cells. Although ACE2 is reported to be expressed in lung, liver, stomach, ileum, kidney and colon, its expressing levels are rather low, especially in the lung. SARS-CoV-2 may use co-receptors/auxiliary proteins as ACE2 partner to facilitate the virus entry. To identify the potential candidates, we explored the single cell gene expression atlas including 119 cell types of 13 human tissues and analyzed the single cell co-expression spectrum of 51 reported RNA virus receptors and 400 other membrane proteins. Consistent with other recent reports, we confirmed that ACE2 was mainly expressed in lung AT2, liver cholangiocyte, colon colonocytes, esophagus keratinocytes, ileum ECs, rectum ECs, stomach epithelial cells, and kidney proximal tubules. Intriguingly, we found that the candidate co-receptors, manifesting the most similar expression patterns with ACE2 across 13 human tissues, are all peptidases, including ANPEP, DPP4 and ENPEP. Among them, ANPEP and DPP4 are the known receptors for human CoVs, suggesting ENPEP as another potential receptor for human CoVs. We also conducted "CellPhoneDB" analysis to understand the cell crosstalk between CoV-targets and their surrounding cells across different tissues. We found that macrophages frequently communicate with the CoVs targets through chemokine and phagocytosis signaling, highlighting the importance of tissue macrophages in immune defense and immune pathogenesis.


Subject(s)
Betacoronavirus/physiology , Receptors, Virus/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Coronavirus , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Macrophages/metabolism , Organ Specificity , Pandemics , Peptide Hydrolases/genetics , Peptide Hydrolases/isolation & purification , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Receptors, Virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL