Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
AAPS J ; 24(1): 19, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1605878

ABSTRACT

Over the past decade, artificial intelligence (AI) and machine learning (ML) have become the breakthrough technology most anticipated to have a transformative effect on pharmaceutical research and development (R&D). This is partially driven by revolutionary advances in computational technology and the parallel dissipation of previous constraints to the collection/processing of large volumes of data. Meanwhile, the cost of bringing new drugs to market and to patients has become prohibitively expensive. Recognizing these headwinds, AI/ML techniques are appealing to the pharmaceutical industry due to their automated nature, predictive capabilities, and the consequent expected increase in efficiency. ML approaches have been used in drug discovery over the past 15-20 years with increasing sophistication. The most recent aspect of drug development where positive disruption from AI/ML is starting to occur, is in clinical trial design, conduct, and analysis. The COVID-19 pandemic may further accelerate utilization of AI/ML in clinical trials due to an increased reliance on digital technology in clinical trial conduct. As we move towards a world where there is a growing integration of AI/ML into R&D, it is critical to get past the related buzz-words and noise. It is equally important to recognize that the scientific method is not obsolete when making inferences about data. Doing so will help in separating hope from hype and lead to informed decision-making on the optimal use of AI/ML in drug development. This manuscript aims to demystify key concepts, present use-cases and finally offer insights and a balanced view on the optimal use of AI/ML methods in R&D.


Subject(s)
Artificial Intelligence , Clinical Trials as Topic , Computational Biology , Drug Development , Machine Learning , Pharmaceutical Research , Research Design , Animals , Artificial Intelligence/trends , Computational Biology/trends , Diffusion of Innovation , Drug Development/trends , Forecasting , Humans , Machine Learning/trends , Pharmaceutical Research/trends , Research Design/trends
2.
Cytokine ; 148: 155697, 2021 12.
Article in English | MEDLINE | ID: covidwho-1385382

ABSTRACT

The prevalence of SARS-CoV-2 is a great threat to global public health. However, the relationship between the viral pathogen SARS-CoV-2 and host innate immunity has not yet been well studied. The genome of SARS-CoV-2 encodes a viral protease called 3C-like protease. This protease is responsible for cleaving viral polyproteins during replication. In this investigation, 293T cells were transfected with SARS-CoV-2 3CL and then infected with Sendai virus (SeV) to induce the RIG-I like receptor (RLR)-based immune pathway. q-PCR, luciferase reporter assays, and western blotting were used for experimental analyses. We found that SARS-CoV-2 3CL significantly downregulated IFN-ß mRNA levels. Upon SeV infection, SARS-CoV-2 3CL inhibited the nuclear translocation of IRF3 and p65 and promoted the degradation of IRF3. This effect of SARS-CoV-2 3CL on type I IFN in the RLR immune pathway opens up novel ideas for future research on SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon-beta/biosynthesis , Proteolysis , DEAD Box Protein 58/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Interferon-beta/genetics , NF-kappa B/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Immunologic/metabolism , Response Elements/genetics , Sendai virus/physiology , Signal Transduction
3.
Protein Sci ; 30(6): 1114-1130, 2021 06.
Article in English | MEDLINE | ID: covidwho-1162948

ABSTRACT

The COVID-19 epidemic is one of the most influential epidemics in history. Understanding the impact of coronaviruses (CoVs) on host cells is very important for disease treatment. The SARS-CoV-2 envelope (E) protein is a small structural protein involved in many aspects of the viral life cycle. The E protein promotes the packaging and reproduction of the virus, and deletion of this protein weakens or even abolishes the virulence. This review aims to establish new knowledge by combining recent advances in the study of the SARS-CoV-2 E protein and by comparing it with the SARS-CoV E protein. The E protein amino acid sequence, structure, self-assembly characteristics, viroporin mechanisms and inhibitors are summarized and analyzed herein. Although the mechanisms of the SARS-CoV-2 and SARS-CoV E proteins are similar in many respects, specific studies on the SARS-CoV-2 E protein, for both monomers and oligomers, are still lacking. A comprehensive understanding of this protein should prompt further studies on the design and characterization of effective targeted therapeutic measures.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus Envelope Proteins/antagonists & inhibitors , Coronavirus Envelope Proteins/metabolism , SARS-CoV-2/physiology , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , COVID-19/metabolism , COVID-19/virology , Coronavirus Envelope Proteins/chemistry , Humans , Models, Molecular , Protein Conformation , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Sequence Alignment , Viroporin Proteins/antagonists & inhibitors , Viroporin Proteins/chemistry , Viroporin Proteins/metabolism
4.
Front Mol Biosci ; 7: 565797, 2020.
Article in English | MEDLINE | ID: covidwho-858778

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus (SARS-CoV-2) and represents the causative agent of a potentially fatal disease that is a public health emergency of international concern. Coronaviruses, including SARS-CoV-2, encode an envelope (E) protein, which is a small, hydrophobic membrane protein; the E protein of SARS-CoV-2 shares a high level of homology with severe acute respiratory syndrome coronavirus (SARS-CoV). In this study, we provide insights into the function of the SARS-CoV-2 E protein channel and the ion and water permeation mechanisms using a combination of in silico methods. Based on our results, the pentameric E protein promotes the penetration of cation ions through the channel. An analysis of the potential mean force (PMF), pore radius and diffusion coefficient reveals that Leu10 and Phe19 are the hydrophobic gates of the channel. In addition, the pore exhibits a clear wetting/dewetting transition with cation selectivity under transmembrane voltage, indicating that it is a hydrophobic voltage-dependent channel. Overall, these results provide structure-based insights and molecular dynamic information that are needed to understand the regulatory mechanisms of ion permeability in the pentameric SARS-CoV-2 E protein channel.

5.
Nurs Crit Care ; 26(2): 94-101, 2021 03.
Article in English | MEDLINE | ID: covidwho-680578

ABSTRACT

BACKGROUND: Nurses are experiencing tremendous stress during the new coronavirus disease 2019 (COVID-19) pandemic, especially intensive care nurses. The pandemic of the disease is a tragedy, which may leave a catastrophic psychological imprint on nurses. Understanding nurses' mental distress can help when implementing interventions to mitigate psychological injuries to nurses. AIMS AND OBJECTIVES: To quantify the severity of nurses' post-traumatic stress disorder (PTSD) symptoms and stress and explore the influencing factors of their psychological health when caring for patients with COVID-19. DESIGN: A cross-sectional survey. METHODS: The PTSD Checklist-Civilian and the Perceived Stress Scale were administered from 11 to 18 March 2020, to 90 nurses selected from another city to go and help an intensive care unit (ICU) in Wuhan, China. These nurses were selected because of their high levels of clinical performance and resilience status. RESULTS: Nurses' average PTSD score was 24.62 ± 6.68, and five (5.6%) of the nurses reported a clinically significant level of PTSD symptoms (>38 points). Nurses' perceived stress averaged 19.33 ± 7, and 20 nurses (22.22%) scored positively >25 points. Nurses' stress and PTSD symptoms were positively correlated (P < .01). Major stress sources included working in an isolated environment, concerns about personal protective equipment shortage and usage, physical and emotional exhaustion, intensive workload, fear of being infected, and insufficient work experiences with COVID-19. CONCLUSIONS: This study showed that even relatively highly resilient nurses experienced some degree of mental distress, including PTSD symptoms and perceived stress. Our findings highlight the importance of helping nurses cultivate resilience and reduce stress. RELEVANCE TO CLINICAL PRACTICE: Recommendations for practice include providing adequate training and orientation before assigning nurses to ICU to help, offering disaster-emergency-preparedness training to keep nurses prepared, providing caring and authentic nursing leadership, offering ongoing psychological support to frontline nurses.


Subject(s)
COVID-19/nursing , Nursing Staff, Hospital/psychology , Occupational Stress/epidemiology , Stress Disorders, Post-Traumatic/epidemiology , Adult , COVID-19/epidemiology , China/epidemiology , Critical Care Nursing , Cross-Sectional Studies , Female , Humans , Male , Nursing Staff, Hospital/statistics & numerical data , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL