Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Chemosphere ; : 136461, 2022.
Article in English | ScienceDirect | ID: covidwho-2031191

ABSTRACT

Because of the current COVID-19 outbreak all over the world, the problem of antiviral drugs entering water has become increasingly serious. Arbidol hydrochloride (ABLH) is one of the most widely used drugs against COVID-19, which has been detected in sewage treatment plant sediments after the COVID-19 outbreak. However, there has been no report on the degradation of ABLH. In order to remove ABLH we prepared a novel photocatalyst composed of Ti3C2 MXene and supramolecular g-C3N4 (TiC/SCN) via a simple method. The properties of the material were studied by a series of characterizations (SEM, TEM, EDS, XRD, FTIR, UV-vis, DRS, XPS, TPC, PL, EIS and UPS), indicating the successful preparation of TiC/SCN. Results show that 99% of ABLH was removed within 150min under visible light illumination by the 0.5TiC/SCN (containing 0.5% of TiC). The performance of 0.5TiC/SCN was about 2.66 times that of SCN resulting from the formation of Schottky junction. Furthermore, under real sunlight illumination, 99.2% of ABLH could be removed by 0.5TiC/SCN within 120min, which was better than that of commercial P25 TiO2. The pH, anions (NO3(-) and SO4(2-)) and dissolved organic matter (fulvic acid) could significantly affect the ABLH degradation. Moreover, three possible degradation pathways of ABLH were proposed, and the toxicities of the corresponding by-products were less toxic than ABLH. Meanwhile, findings showed that the superoxide radicals played a major role in the photocatalytic degradation of ABLH by 0.5TiC/SCN. This study provides a well understanding of the mechanism of ABLH degradation and provides a valuable reference for the treatment of ABLH in water.

2.
Virulence ; 13(1):1471-1485, 2022.
Article in English | Web of Science | ID: covidwho-2017508

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen causing severe diarrhoea, dehydration, and death in nursing piglets and enormous economic losses for the global swine industry. Furthermore, it can infect multiple animal species including humans. Therefore, a rapid, definitive diagnostic assay is required for the effective control of this zoonotic pathogen. To identify PDCoV, we developed a nucleic acid detection assay combining reverse transcription recombinase-aided amplification (RT-RAA) with a lateral flow dipstick (LFD) targeting the highly conserved genomic region in the ORF1b gene. The RT-RAA-LFD assay exhibited good PDCoV detection reproducibility and repeatability and could be completed within 11 min. Ten minutes at 40 degrees C was required for nucleic acid amplification and 1 min at room temperature was needed for the visual LFD readout. The assay specifically detected PDCoV and did not cross-react with any other major swine pathogens. The 95% limit of detection (LOD) was 3.97 median tissue culture infectious dose PDCoV RNA per reaction. This performance was comparable to that of a reference TaqMan-based real-time RT-PCR (trRT-PCR) assay for PDCoV. Of 149 swine small intestine, rectal swab, and serum samples, 71 and 75 tested positive for PDCoV according to RT-RAA-LFD and trRT-PCR, respectively. The diagnostic coincidence rate for both assays was 97.32% (145/149) and the kappa value was 0.946 (p < 0.001). Overall, the RT-RAA-LFD assay is a user-friendly diagnostic tool that can rapidly and visually detect PDCoV.

3.
Ccs Chemistry ; : 1-17, 2022.
Article in English | Web of Science | ID: covidwho-1998162

ABSTRACT

Stimulator of interferon genes, namely STING, an adaptor protein located in the endoplasmic reticulum, has been recognized as a shining target for cancer and infection research. However, STING agonists cyclic dinucleotides (CDNs) have shown almost zero efficacy in phase I clinical trials as a monotherapy, likely due to poor cellular permeability and rapid diffusion despite intratumoral injection. These deficiencies further affect other applications of CDNs, such as pandemic SARS-CoV-2 prevention and therapy. Here, we rationally design a supramolecular cytosolic delivery system based on controllable recognition of calixarene, namely CASTING (CAlixarene-STING), to improve CDN druggability, including degradation stability, cellular permeability, and tissue retention. CASTING efficiently enhances the immunostimulatory potency of CDG(SF) [a chemically modified cyclic di-GMP (CDG)] to generate an immunogenic microenvironment for melanoma regression, anti-PD-1 response rate increase, and durable memory formation against tumor recurrence. More importantly, CASTING displays a superior adjuvant activity on SARS-CoV-2 recombinant spike/receptor binding domain vaccines, inducing robust and coordinated T-cell and antibody responses against SARS-CoV-2 infection in vivo. Collectively, the CASTING design represents an innovative advancement to facilitate the clinical translational capability of STING agonists. [GRAPHICS] .

4.
Chinese Journal of New Drugs ; 31(10):972-977, 2022.
Article in Chinese | EMBASE | ID: covidwho-1894105

ABSTRACT

Objective: To explore the implementation and management measures of drug clinical trials during the period of COVID-19 epidemic, protect the safety and rights of subjects, ensure the smooth implementation of clinical trials, and provide reference and suggestions for the management work of clinical trial institutions. Methods: According to the requirements of COVID-19 epidemic prevention and control policies and the national guiding principles for drug clinical trial management, combining the experience of our hospital, we optimized the working process and proposed management measures in four aspects including project and personnel management, subject follow-up management, drug distribution management, and communication between all parties involved in clinical trials. Results and conclusions: During the period of COVID-19 epidemic, our hospital has taken a series of measures which ensured the smooth implementation of more than 200 drug clinical trials and protected the safety and rights of subjects and researchers.

5.
Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi ; 57(3): 282-288, 2022 Mar 07.
Article in Chinese | MEDLINE | ID: covidwho-1760874

ABSTRACT

Objective: To analyze the correlation between loss of smell/taste and the number of real confirmed cases of coronavirus disease 2019 (COVID-19) worldwide based on Google Trends data, and to explore the guiding role of smell/taste loss for the COVID-19 prevention and control. Methods: "Loss of smell" and "loss of taste" related keywords were searched in the Google Trends platform, the data were obtained from Jan. 1 2019 to Jul. 11 2021. The daily and newly confirmed COVID-19 case number were collected from World Health Organization (WHO) since Dec. 30 2019. All data were statistically analyzed by SPSS 23.0 software. The correlation was finally tested by Spearman correlation analysis. Results: A total of data from 80 weeks were collected. The retrospective analysis was performed on the new trend of COVID-19 confirmed cases in a total of 186 292 441 cases worldwide. Since the epidemic of COVID-19 was recorded on the WHO website, the relative searches related to loss of smell/taste in the Google Trends platform had been increasing globally. The global relative search volumes of "loss of smell" and "loss of taste" on Google Trends was 10.23±2.58 and 16.33±2.47 before the record of epidemic while 80.25±39.81 and 80.45±40.04 after (t value was 8.67, 14.43, respectively, both P<0.001). In the United States and India, the relative searches for "loss of smell" and "loss of taste" after the record of epidemic were also much higher than before (all P<0.001). The correlation coefficients between the trend of weekly new COVID-19 cases and the Google Trends of "loss of smell" in the global, United States, and India was 0.53, 0.76, and 0.82 respectively (all P<0.001), the correlation coefficients with Google Trends of "loss of taste" was 0.54, 0.78, and 0.82 respectively (all P<0.001). The lowest and highest point of loss of smell/taste search curves of Google Trends in different periods appeared 7 to 14 days earlier than that of the weekly newly COVID-19 confirmed cases curves, respectively. Conclusions: There is a significant positive correlation between the number of newly confirmed cases of COVID-19 worldwide and the amount of keywords, such as "loss of smell" and "loss of taste", retrieved in Google Trends. The trend of big data based on Google Trends might predict the outbreak trend of COVID-19 in advance.


Subject(s)
Ageusia , COVID-19 , Big Data , Disease Outbreaks , Humans , Internet , Retrospective Studies , Smell , United States
6.
Zhonghua Jie He He Hu Xi Za Zhi ; 44(7): 645-650, 2021 Jul 12.
Article in Chinese | MEDLINE | ID: covidwho-1311394

Subject(s)
Cough , Chronic Disease , Humans
7.
Zhonghua Liu Xing Bing Xue Za Zhi ; 42(6): 977-982, 2021 Jun 10.
Article in Chinese | MEDLINE | ID: covidwho-1194725

ABSTRACT

Objective: To evaluate the safety of two inactivated COVID-19 vaccines in a large-scale emergency use. Methods: Based on the "Vaccination Information Collection System", the incidence data of adverse reactions in the population vaccinated with the inactivated COVID-19 vaccines developed by Beijing Institute of Biological Products Co., Ltd and Wuhan Institute of Biological Products Co., Ltd, respectively, in emergency use were collected, and the relevant information were analyzed with descriptive epidemiological and statistical methods. Results: By December 1, 2020, the vaccination information of 519 543 individuals had been collected. The overall incidence rate of adverse reactions was 1.06%, the incidence rate of systemic adverse reactions was 0.69% and the incidence rate of local adverse reactions was 0.37%. The main systemic adverse reactions included fatigue, headache, fever, cough and loss of appetite with the incidence rates of 0.21%, 0.14%, 0.06%, 0.05% and 0.05%, respectively; the main local adverse reactions were injection site pain and injection site swelling with the incidence rates of 0.24% and 0.05%, respectively. Conclusion: The two inactivated COVID-19 vaccines by Beijing Institute of Biological Products Co., Ltd and Wuhan Institute of Biological Products Co., Ltd showed that in the large-scale emergency use, the incidence rate of general reactions was low and no serious adverse reactions were observed after the vaccinations, demonstrating that the vaccines have good safety.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination , Vaccines/adverse effects , Vaccines, Inactivated
8.
Ieee Transactions on Big Data ; 7(1):13-24, 2021.
Article in English | Web of Science | ID: covidwho-1186117

ABSTRACT

A novel coronavirus disease 2019 (COVID-19) was detected and has spread rapidly across various countries around the world since the end of the year 2019. Computed Tomography (CT) images have been used as a crucial alternative to the time-consuming RT-PCR test. However, pure manual segmentation of CT images faces a serious challenge with the increase of suspected cases, resulting in urgent requirements for accurate and automatic segmentation of COVID-19 infections. Unfortunately, since the imaging characteristics of the COVID-19 infection are diverse and similar to the backgrounds, existing medical image segmentation methods cannot achieve satisfactory performance. In this article, we try to establish a new deep convolutional neural network tailored for segmenting the chest CT images with COVID-19 infections. We first maintain a large and new chest CT image dataset consisting of 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of the infected lung can be enhanced by adjusting the global intensity, in the proposed deep CNN, we introduce a feature variation block which adaptively adjusts the global properties of the features for segmenting COVID-19 infection. The proposed FV block can enhance the capability of feature representation effectively and adaptively for diverse cases. We fuse features at different scales by proposing Progressive Atrous Spatial Pyramid Pooling to handle the sophisticated infection areas with diverse appearance and shapes. The proposed method achieves state-of-the-art performance. Dice similarity coefficients are 0.987 and 0.726 for lung and COVID-19 segmentation, respectively. We conducted experiments on the data collected in China and Germany and show that the proposed deep CNN can produce impressive performance effectively. The proposed network enhances the segmentation ability of the COVID-19 infection, makes the connection with other techniques and contributes to the development of remedying COVID-19 infection.

9.
Chinese Journal of New Drugs ; 29(18):2103-2108, 2020.
Article in Chinese | EMBASE | ID: covidwho-984990

ABSTRACT

Three types of coronavirus, SARS-CoV, MERS-CoV, and SARS-CoV-2, are known to cause severe diseases in humans and cause outbreaks or epidemics. After the outbreak of the epidemic, a number of institutions around the world carried out coronavirus related vaccine research and development, and the vaccines are mainly divided into five types: inactivated virus vaccine, alive-attenuated vaccine, gene recombination subunit vaccine, viral vector vaccine and nucleic acid vaccine. In this review, the progress in coronavirus vaccine development was summarized by analyzing the global research of coronavirus vaccine.

SELECTION OF CITATIONS
SEARCH DETAIL