Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
Add filters

Year range
1.
J Interpers Violence ; : 8862605211072149, 2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1625804

ABSTRACT

Many countries worldwide have implemented dedicated measures, such as shelter at home, to contain the spread of the COVID-19 virus. However, those mitigation measures may have major implications for individuals living with someone abusive or controlling. Domestic violence (DV) may be one of the unintended consequences of public health measures due to increased various stressors and reduced access to support and services. There has been a lack of empirical research on DV victimization among gender and sexual minorities, a population vulnerable to interpersonal violence and its associated adverse health outcomes. This study investigates the prevalence of DV victimization among men who have sex with men (MSM) in Jiangsu Province, China, during the COVID-19 lockdown and its correlates with COVID-19-related psychosocial and health stressors. A total of 413 MSM were recruited via snowball sampling, venue-based, and internet-based sampling from four cities in Jiangsu Province. After providing informed consent, all participants completed study questionnaires, followed by HIV testing. Over a quarter of the participants (27.4%) reported DV victimization during the COVID-19 lockdown, including experience of verbal, physical, or sexual abuse. After adjusting sociodemographic factors, DV victimization was associated with various adverse experiences during the COVID-19 lockdown, including increased stress or anxiety level, increased alcohol use, and housing instability. Study findings underscore the prevalence of DV victimization among MSM during the COVID-19 pandemic in China. The results can inform public health efforts to raise awareness and address DV victimization among MSM in the low- and middle-income country context during the COVID-19 pandemic. Adequate health and social services and economic resources are also critical to address the needs of MSM experiencing DV victimization.

3.
Cultur Divers Ethnic Minor Psychol ; 2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1621210

ABSTRACT

OBJECTIVE: The coronavirus disease (COVID-19) pandemic has amplified preexisting racism and xenophobia. In this study, we investigated (a) whether perceived personal and group discrimination make distinct contributions to Chinese Canadians' negative affect and concern that the heightened discrimination they experienced during the pandemic will continue after the pandemic; (b) whether Canadian and Chinese identities and social support moderate the effect of discrimination on this concern; and (c) whether race-based rejection sensitivity (RS) explains why each type of discrimination predicts negative affect and expectation of future discrimination. METHOD: A sample of Chinese Canadian adults across Canadian provinces (N = 516; Mage = 42.74, 53.3% females) completed a questionnaire assessing personal and group discrimination, Chinese and Canadian identity, a short form of race-based RS, negative affect, and expectation of future discrimination. RESULTS: Personal and group discrimination were intercorrelated and positively associated with negative emotion and expectation of future discrimination. Chinese Canadians who identified more strongly as Chinese experienced a less adverse impact related to group discrimination. However, those who identified more (vs. less) strongly as Canadians were more likely to be impacted by personal discrimination. Finally, path analysis revealed that both personal and group discrimination were positively associated with RS, which in turn predicted an expectation that long-lasting racism would continue after the pandemic. CONCLUSION: Group and personal discrimination play different roles in Chinese Canadians' experiences during and expectations after the pandemic. Maintaining Chinese identity can be beneficial to Chinese Canadians, particularly in mitigating the negative effect of group discrimination during the pandemic. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

4.
Open forum infectious diseases ; 8(Suppl 1):S357-S358, 2021.
Article in English | EuropePMC | ID: covidwho-1602538

ABSTRACT

Background Molnupiravir (MOV), (MK-4482, EIDD-2801) is being clinically developed for the treatment of COVID-19 disease caused by SARS-CoV-2. MOV is the orally administered 5′-isobutyrate prodrug of the active, antiviral ribonucleoside analogue, N-hydroxycytidine (NHC, EIDD-1931) which inhibits viral replication by induction of mutations in the viral genome, leading to viral error catastrophe. In 2 clinical studies, hospitalized (MOVe-In) and non-hospitalized (MOVe-Out) participants were treated for 5 days with MOV and followed up to Day 29. Viral RNA isolated from nasal swab samples were sequenced to determine the rate, distribution and type of viral mutations observed after MOV treatment. Methods RNA isolated from nasopharangeal swab samples collected during study conduct was quantified by RT-PCR. Samples containing >22,000 copies/mL of RNA underwent complete genome NGS using the Ion AmpliSeq SARS-CoV-2 research panel and Ion Torrent sequencing. Mutation rates were calculated by determining the number of nucleotide changes observed across the entire genome at Day 3 and/or Day 5 compared to baseline. Results Combined data from both studies showed an increase of ~2-4 fold in the viral mutation rate post-baseline in MOV treated compared with placebo. Mutations were distributed across the entire genome with only a minority being observed in more than one sample. The most frequent mutations were transitions of C to U observed in the highest MOV dose group (800 mg/BID). Conclusion Consistent with the proposed mechanism of action of MOV, an increase in the rate of transition mutations in the virus was observed in post-baseline nasal swab samples from participants treated with MOV compared with placebo. Disclosures Julie Strizki, PhD, Merck & Co., Inc. (Employee, Shareholder) Jay Grobler, PhD, Merck & Co., Inc. (Employee, Shareholder) Ying Zhang, PhD, Merck & Co., Inc. (Employee, Shareholder) Jiejun Du, PhD, Merck & Co., Inc. (Employee, Shareholder) Shunbing Zhao, PhD, Merck & Co., Inc. (Employee, Shareholder) Diane Levitan, PhD, Merck & Co., Inc. (Employee, Shareholder) Alex Therien, PhD, Merck & Co., Inc. (Employee, Shareholder) Joan R. Butterton, MD, Merck Sharp & Dohme Corp. (Employee, Shareholder) Nicholas Murgolo, PhD, Merck & Co., Inc. (Employee, Shareholder)

5.
Emerg Microbes Infect ; 11(1): 212-226, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1585243

ABSTRACT

The recent emergence of COVID-19 variants has necessitated the development of new vaccines that stimulate the formation of high levels of neutralizing antibodies against S antigen variants. A new strategy involves the intradermal administration of heterologous vaccines composed of one or two doses of inactivated vaccine and a booster dose with the mutated S1 protein (K-S). Such vaccines improve the immune efficacy by increasing the neutralizing antibody titers and promoting specific T cell responses against five variants of the RBD protein. A viral challenge test with the B.1.617.2 (Delta) variant confirmed that both administration schedules (i.e. "1 + 1" and "2 + 1") ensured protection against this strain. These results suggest that the aforementioned strategy is effective for protecting against new variants and enhances the anamnestic immune response in the immunized population.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CHO Cells , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Chlorocebus aethiops , Cricetulus , Female , Humans , Macaca mulatta , Mice , Mice, Transgenic , Vaccination , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Vero Cells
7.
Open forum infectious diseases ; 8(Suppl 1):S373-S373, 2021.
Article in English | EuropePMC | ID: covidwho-1564195

ABSTRACT

Background Molnupiravir (MOV, MK-4482, EIDD-2801) is an orally administered prodrug of N-hydroxycytidine (NHC, EIDD-1931), a nucleoside with broad antiviral activity against a range of RNA viruses. MOV acts by driving viral error catastrophe following its incorporation by the viral RdRp into the viral genome. Given its mechanism of action, MOV activity should not be affected by substitutions in the spike protein present in SARS-CoV-2 variants of concern which impact efficacy of therapeutic neutralizing antibodies and vaccine induced immunity. We characterized MOV activity against variants by assessing antiviral activity in vitro and virologic response from the Phase 2/3 clinical trials (MOVe-In, MOVe-Out) for treatment of COVID-19. Methods MOV activity against several SARS-CoV-2 variants, was evaluated in an in vitro infection assay. Antiviral potency of NHC (IC50) was determined in Vero E6 cells infected with virus at MOI ~0.1 by monitoring CPE. Longitudinal SARS-CoV-2 RNA viral load measures in participants enrolled in MOVe-In and MOVe-Out were analyzed based on SARS-CoV-2 genotype. Sequences of SARS-CoV-2 from study participants were amplified from nasal swabs by PCR and NGS was performed on samples with viral genome RNA of >22,000 copies/ml amplified by primers covering full length genome with Ion Torrent sequencing to identify clades represented in trial participants. SARS-CoV-2 clades were assigned using clade.nextstrain.org. Results In vitro, NHC was equally effective against SARS-CoV-2 variants B.1.1.7 (20I), B.1351 (20H), and P1 (20J), compared with the original WA1 (19B) isolate. In clinical trials, no discernable difference was observed in magnitude of viral response measured by change from baseline in RNA titer over time across all clades represented including 20A through 20E and 20G to 20I. No participants at the time of the study presented with 20F, 20J, or 21A. Conclusion Distribution of clades in participants in MOVe-In and MOVe-Out was representative of those circulating globally at the time of collection (Oct 2020 – Jan 2021). Both in vitro and clinical data suggest that spike protein substitutions do not impact antiviral activity of MOV and suggest its potential use for the treatment of SARS-CoV-2 variants. Disclosures Jay Grobler, PhD, Merck & Co., Inc. (Employee, Shareholder) Julie Strizki, PhD, Merck & Co., Inc. (Employee, Shareholder) Nicholas Murgolo, PhD, Merck & Co., Inc. (Employee, Shareholder) Wei Gao, PhD, Merck & Co., Inc. (Employee, Shareholder) Youfang Cao, PhD, Merck & Co. (Employee) Ying Zhang, PhD, Merck & Co., Inc. (Employee, Shareholder) Jiejun Du, PhD, Merck & Co., Inc. (Employee, Shareholder) Manoj Nair, PhD, Merck & Co., Inc. (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support) Yaoxing Huang, PhD, Merck & Co., Inc. (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support) Yang Luo, PhD, Merck & Co., Inc. (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support) Daria Hazuda, PhD, Merck & Co., Inc. (Employee, Shareholder) David D. Ho, MD, Merck & Co., Inc. (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support) David D. Ho, MD, Brii Biosciences (Individual(s) Involved: Self): Consultant;Merck (Individual(s) Involved: Self): Research Grant or Support;RenBio (Individual(s) Involved: Self): Consultant, Founder, Other Financial or Material Support, Shareholder;WuXi Biologics (Individual(s) Involved: Self): Consultant

8.
Clin Infect Dis ; 73(11): e3949-e3955, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1561940

ABSTRACT

BACKGROUND: We evaluated an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine for immunogenicity and safety in adults aged 18-59 years. METHODS: In this randomized, double-blinded, controlled trial, healthy adults received a medium dose (MD) or a high dose (HD) of the vaccine at an interval of either 14 days or 28 days. Neutralizing antibody (NAb) and anti-S and anti-N antibodies were detected at different times, and adverse reactions were monitored for 28 days after full immunization. RESULTS: A total of 742 adults were enrolled in the immunogenicity and safety analysis. Among subjects in the 0, 14 procedure, the seroconversion rates of NAb in MD and HD groups were 89% and 96% with geometric mean titers (GMTs) of 23 and 30, respectively, at day 14 and 92% and 96% with GMTs of 19 and 21, respectively, at day 28 after immunization. Anti-S antibodies had GMTs of 1883 and 2370 in the MD group and 2295 and 2432 in the HD group. Anti-N antibodies had GMTs of 387 and 434 in the MD group and 342 and 380 in the HD group. Among subjects in the 0, 28 procedure, seroconversion rates for NAb at both doses were both 95% with GMTs of 19 at day 28 after immunization. Anti-S antibodies had GMTs of 937 and 929 for the MD and HD groups, and anti-N antibodies had GMTs of 570 and 494 for the MD and HD groups, respectively. No serious adverse events were observed during the study period. CONCLUSIONS: Adults vaccinated with inactivated SARS-CoV-2 vaccine had NAb as well as anti-S/N antibody and had a low rate of adverse reactions. CLINICAL TRIALS REGISTRATION: NCT04412538.

9.
Preprint in English | EuropePMC | ID: ppcovidwho-295297

ABSTRACT

The recent emergence of new variants in the COVID-19 pandemic has led to new requirements for vaccines, with a focus on the capacity of vaccines to elicit high levels of neutralizing antibodies with specific recognition of S antigen variants based on the characterized vaccines licensed for use. A new strategy involving a heterologous vaccine composed of one or two doses of inactivated vaccine and a boost with the S1 protein with mutations (K-S) administered via the intradermal route was designed in this work and was found to improve immune efficacy by increasing neutralizing antibody titers and promoting specific T cell responses against 5 variants of the RBD peptide. A viral challenge test with the B.1.617.2 (Delta) variant confirmed that the both schedules of “1+1” and “2+1” administration ensured a clinical protective effect against this strain. All of these results not only suggested the feasibility of our strategy for protecting against new variants but also provided a technical pathway to enhance the anamnestic immune response in the immunized population.

10.
Preprint in English | EuropePMC | ID: ppcovidwho-293976

ABSTRACT

Severe COVID-19 patients account for most of the mortality of this disease. Early detection and effective treatment of severe patients remain major challenges. Here, we performed proteomic and metabolomic profiling of sera from 46 COVID-19 and 53 control individuals. We then trained a machine learning model using proteomic and metabolomic measurements from a training cohort of 18 non-severe and 13 severe patients. The model correctly classified severe patients with an accuracy of 93.5%, and was further validated using ten independent patients, seven of which were correctly classified. We identified molecular changes in the sera of COVID-19 patients implicating dysregulation of macrophage, platelet degranulation and complement system pathways, and massive metabolic suppression. This study shows that it is possible to predict progression to severe COVID-19 disease using serum protein and metabolite biomarkers. Our data also uncovered molecular pathophysiology of COVID-19 with potential for developing anti-viral therapies.<br><br>Funding: This work is supported by grants from Westlake Special Program for COVID19 (2020), and Tencent foundation (2020), National Natural Science Foundation of China (81972492, 21904107, 81672086), Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars (LR19C050001), Hangzhou Agriculture and Society Advancement Program (20190101A04). <br><br>Conflict of Interest: The research group of T.G. is partly supported by Tencent, Thermo Fisher Scientific, SCIEX and Pressure Biosciences Inc. C.Z., Z.K., Z.K. and S.Q. are employees of DIAN Diagnostics.

11.
Brief Bioinform ; 2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1545907

ABSTRACT

Vaccines have made gratifying progress in preventing the 2019 coronavirus disease (COVID-19) pandemic. However, the emergence of variants, especially the latest delta variant, has brought considerable challenges to human health. Hence, the development of robust therapeutic approaches, such as anti-COVID-19 drug design, could aid in managing the pandemic more efficiently. Some drug design strategies have been successfully applied during the COVID-19 pandemic to create and validate related lead drugs. The computational drug design methods used for COVID-19 can be roughly divided into (i) structure-based approaches and (ii) artificial intelligence (AI)-based approaches. Structure-based approaches investigate different molecular fragments and functional groups through lead drugs and apply relevant tools to produce antiviral drugs. AI-based approaches usually use end-to-end learning to explore a larger biochemical space to design antiviral drugs. This review provides an overview of the two design strategies of anti-COVID-19 drugs, the advantages and disadvantages of these strategies and discussions of future developments.

12.
J Proteome Res ; 2021 Nov 16.
Article in English | MEDLINE | ID: covidwho-1531980

ABSTRACT

RT-PCR is the primary method to diagnose COVID-19 and is also used to monitor the disease course. This approach, however, suffers from false negatives due to RNA instability and poses a high risk to medical practitioners. Here, we investigated the potential of using serum proteomics to predict viral nucleic acid positivity during COVID-19. We analyzed the proteome of 275 inactivated serum samples from 54 out of 144 COVID-19 patients and shortlisted 42 regulated proteins in the severe group and 12 in the non-severe group. Using these regulated proteins and several key clinical indexes, including days after symptoms onset, platelet counts, and magnesium, we developed two machine learning models to predict nucleic acid positivity, with an AUC of 0.94 in severe cases and 0.89 in non-severe cases, respectively. Our data suggest the potential of using a serum protein-based machine learning model to monitor COVID-19 progression, thus complementing swab RT-PCR tests. More efforts are required to promote this approach into clinical practice since mass spectrometry-based protein measurement is not currently widely accessible in clinic.

13.
Polymers (Basel) ; 13(21)2021 Oct 31.
Article in English | MEDLINE | ID: covidwho-1512546

ABSTRACT

Serving as matrices, polypropylene (PP) melt-blown nonwoven fabrics with 4% electrostatic electret masterbatch were incorporated with a 6%, 10%, 14%, or 18% phosphorus-nitrogen flame retardant. The test results indicate that the incorporation of the 6% flame retardant prevented PP melt-blown nonwoven fabrics from generating a molten drop, which, in turn, hampers the secondary flame source while increasing the fiber diameter ratio. With a combination of 4% electrostatic electret masterbatch and the 6% flame retardant, PP melt-blown nonwoven fabrics were grafted with ZIF-8 and Ag@ZIF-8. The antibacterial effect of ZIF-8 and Ag@ZIF-8 was 40% and 85%, respectively. Moreover, four reinforcing measures were used to provide Ag@ZIF-8 PP melt-blown nonwoven fabrics with synergistic effects, involving lamination, electrostatic electret, and Ag@ZIF-8 grafting, as well as a larger diameter because of the addition of phosphorus-nitrogen flame retardants. As specified in the GB2626-2019 and JIS T8151-2018 respiratory resistance test standards, with a constant 60 Pa, Ag@ZIF-8 PP melt-blown nonwoven membranes were tested for a filter effect against PM 0.3. When the number of lamination layers was five, the filter effect was 88 ± 2.2%, and the respiratory resistance was 51 ± 3.6 Pa.

14.
Preprint in English | EuropePMC | ID: ppcovidwho-292322

ABSTRACT

Background: The COVID-19 pandemic presented severe challenges to emergency practice of acute coronary syndrome (ACS). However, poor evidence was shown on ACS in a non-hot-spot region. We sought to clarify the influence of the first-wave COVID-19 pandemic on emergency ACS from a non-epicenter region. Methods: : This retrospective multicenter study was conducted in emergency ACS patients during the pandemic (from 2020-01-23 to 2020-03-29) and the ones during the same period in 2019. Clinical characteristics, timeline parameters and treatment strategies were compared between different groups. Association of the pandemic with non-invasive therapy was further assessed. Results: : Compared with 2019, ACS had a drop in admission (267 cases vs. 475 cases) and invasive therapy (140 cases vs. 318 cases). Also, process delays were detected including the period from symptom onset to first medical contact (S-to-FMC, 5h vs. 2.5h), the period from FMC to electrocardiogram (ECG) completed (8min vs. 4min) and the period from FMC to dual antiplatelet therapy (FMC-to-DAPT, 25min vs. 19min). Primary percutaneous coronary intervention (PPCI) decreased by 54.9% in STEMI and early invasive therapy decreased by 59.2% in NSTE-ACS. The proportion of invasive therapy in NSTE-ACS decreased more than in STEMI (16.9% vs. 10.1%) with longer process delay. The pandemic was associated with increased non-PPCI in STEMI (OR=1.707, 95%CI 1.082-2.692, P=0.021) and elevated medication in NSTE-ACS (OR=2.029, 95%CI 1.268-3.247, P=0.003), respectively. Conclusion: Even in a non-epicenter region, the first-wave COVID-19 pandemic caused a significant reduction of invasive therapy and evident process delays in emergency ACS.

15.
Emerg Microbes Infect ; 10(1): 2194-2198, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1504286

ABSTRACT

Inactivated coronaviruses, including severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and Middle East respiratory syndrome coronavirus (MERS-CoV), as potential vaccines have been reported to result in enhanced respiratory diseases (ERDs) in murine and nonhuman primate (NHP) pneumonia models after virus challenge, which poses great safety concerns of antibody-dependent enhancement (ADE) for the rapid wide application of inactivated SARS-CoV-2 vaccines in humans, especially when the neutralizing antibody levels induced by vaccination or initial infection quickly wane to nonneutralizing or subneutralizing levels over the time. With passive transfer of diluted postvaccination polyclonal antibodies to mimic the waning antibody responses after vaccination, we found that in the absence of cellular immunity, passive infusion of subneutralizing or nonneutralizing anti-SARS-CoV-2 antibodies could still provide some level of protection against infection upon challenge, and no low-level antibody-enhanced infection was observed. The anti-SARS-CoV-2 IgG-infused group and control group showed similar, mild to moderate pulmonary immunopathology during the acute phase of virus infection, and no evidence of vaccine-related pulmonary immunopathology enhancement was found. Typical immunopathology included elevated MCP-1, IL-8 and IL-33 in bronchoalveolar lavage fluid; alveolar epithelial hyperplasia; and exfoliated cells and mucus in bronchioles. Our results corresponded with the recent observations that no pulmonary immunology was detected in preclinical studies of inactivated SARS-CoV-2 vaccines in either murine or NHP pneumonia models or in large clinical trials and further supported the safety of inactivated SARS-CoV-2 vaccines.


Subject(s)
Antibodies, Viral/immunology , Antibody-Dependent Enhancement , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Alveolar Epithelial Cells/pathology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/toxicity , Bronchioles/chemistry , Bronchioles/pathology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , COVID-19/pathology , COVID-19/virology , Cytokines/analysis , Humans , Hyperplasia , Immunoglobulin G/immunology , Immunoglobulin G/toxicity , Lung/pathology , Macaca mulatta , Male , Mice , Mucus , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Vaccines, Inactivated/immunology
16.
Front Med (Lausanne) ; 8: 728055, 2021.
Article in English | MEDLINE | ID: covidwho-1497087

ABSTRACT

Objective: To conduct a randomized controlled clinical trial to evaluate the clinical efficacy and prognostic value of Jinhua Qinggan granules in patients with confirmed and suspected coronavirus disease 2019 (COVID-19). Methods: A total of 123 suspected and confirmed COVID-19 patients participated in this clinical trial and were randomly divided into Jinhua and Western medicine groups. For 14 days, the Jinhua group was treated with Jinhua Qinggan granules and antiviral drugs, and the Western medicine group was treated with antiviral drugs alone. We collected information on clinical symptoms, disease aggravation rates, and negative conversion rates of nucleic acids in patients, and observed the effects of anti-infective drugs. Results: There was no significant difference in symptom improvement rates between the two groups, both confirmed and suspected patients (P > 0.05). Both treatments relieved symptoms such as fever, fatigue, and diarrhea. However, the Jinhua treatment was superior in relieving fever and poor appetite. Anti-infective drug use rates were significantly lower in the Jinhua group than in the control group. Conclusion: Jinhua Qinggan granules combined with Western medicine could relieve the clinical symptoms of fever and poor appetite in COVID-19 patients, reduce the use of antibiotics to a certain extent. Clinical Trial Registration: The registration number at China Clinical Trial Registry is ChiCTR2000029601.

17.
Infect Drug Resist ; 14: 4217-4226, 2021.
Article in English | MEDLINE | ID: covidwho-1486700

ABSTRACT

Background: There has been an increasing number of COVID-19 patients around the world. Since some patients developed with gastrointestinal bleeding, our study focused on the clinical features and gastroscopic findings of these patients, and factors associated with occult gastrointestinal bleeding. Patients and Methods: In this retrospective, observational study, we collected 368 COVID-19 patients who performed fecal or gastric occult blood from Wuhan Tongji Hospital, Jin Yin-tan Hospital, and Wuhan Union Hospital between February 1, 2020 and March 6, 2020. Clinical features were compared between patients with or without occult gastrointestinal bleeding, and gastroscopic findings of seven patients were described. Logistic regression analyses were performed to explore the factors associated with occult gastrointestinal bleeding. Results: In total, 43 (11.7%) patients presented occult gastrointestinal bleeding, whereas 35 (81.4%) of severe cases. CRP level, prothrombin time and D-dimer were higher, while lymphocyte count and albumin levels were decreased in patients with occult gastrointestinal bleeding. Gastroscopy in seven COVID-19 patients showed mucosal congestion, erosion or scattered bleeding at different sites. Albumin levels (OR, 0.856 [95% CI 0.793-0.924]; p < 0.001), prothrombin time (OR, 1.267 [1.089-1.475]; p = 0.002) on admission and severe disease (OR, 4.157 [1.765-9.791]; p = 0.001) were independent factors associated with GIB in COVID-19 patients, while antiviral drugs and glucocorticoid therapy were not associated with it. Conclusion: COVID-19 patients with occult gastrointestinal bleeding suffered from worse prognosis. Patients with decreased serum albumin levels or prolonged prothrombin time, and severe cases were at higher risk of occult gastrointestinal bleeding.

18.
Med J Aust ; 215(9): 390-392.e22, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1478377

ABSTRACT

The MJA-Lancet Countdown on health and climate change in Australia was established in 2017, and produced its first national assessment in 2018, its first annual update in 2019, and its second annual update in 2020. It examines indicators across five broad domains: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. Our special report in 2020 focused on the unprecedented and catastrophic 2019-20 Australian bushfire season, highlighting indicators that explore the relationships between health, climate change and bushfires. For 2021, we return to reporting on the full suite of indicators across each of the five domains and have added some new indicators. We find that Australians are increasingly exposed to and vulnerable to excess heat and that this is already limiting our way of life, increasing the risk of heat stress during outdoor sports, and decreasing work productivity across a range of sectors. Other weather extremes are also on the rise, resulting in escalating social, economic and health impacts. Climate change disproportionately threatens Indigenous Australians' wellbeing in multiple and complex ways. In response to these threats, we find positive action at the individual, local, state and territory levels, with growing uptake of rooftop solar and electric vehicles, and the beginnings of appropriate adaptation planning. However, this is severely undermined by national policies and actions that are contrary and increasingly place Australia out on a limb. Australia has responded well to the COVID-19 public health crisis (while still emerging from the bushfire crisis that preceded it) and it now needs to respond to and prepare for the health crises resulting from climate change.


Subject(s)
Climate Change , Conservation of Natural Resources , Disasters , Public Health , Australia , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Policy
19.
Vaccine ; 39(48): 6980-6983, 2021 11 26.
Article in English | MEDLINE | ID: covidwho-1475113

ABSTRACT

In clinical trials, antibodies against SARS-CoV-2 were almost eliminated in participants six months after immunization with an inactivated SARS-CoV-2 vaccine. The short duration of antibody persistence is an urgent problem. In this study, the problem was solved by intradermal inoculation with trace antigen. Within 72 h after intradermal inoculation, slight inflammatory reactions, such as redness and swelling, were observed at the inoculation site of the participants. On the 7th, 60th and 180th days after inoculation, the antibodies of the participants were detected, and it was found that the neutralizing antibody and ELISA (IgGs) anti-S antibody levels rapidly increased and were maintained for 6 months. These results indicate that there was a SARS-CoV-2-specific immune response in the participants immunized with an inactivated SARS-CoV-2 vaccine, which could be quickly and massively activated by intradermal trace antigen inoculation to produce an effective clinically protective effect.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Humans , SARS-CoV-2
20.
Front Immunol ; 12: 730022, 2021.
Article in English | MEDLINE | ID: covidwho-1468343

ABSTRACT

Pulmonary surfactant is a complex and highly surface-active material. It covers the alveolar epithelium and consists of 90% lipids and 10% proteins. Pulmonary surfactant lipids together with pulmonary surfactant proteins facilitate breathing by reducing surface tension of the air-water interface within the lungs, thereby preventing alveolar collapse and the mechanical work required to breathe. Moreover, pulmonary surfactant lipids, such as phosphatidylglycerol and phosphatidylinositol, and pulmonary surfactant proteins, such as surfactant protein A and D, participate in the pulmonary host defense and modify immune responses. Emerging data have shown that pulmonary surfactant lipids modulate the inflammatory response and antiviral effects in some respiratory viral infections, and pulmonary surfactant lipids have shown promise for therapeutic applications in some respiratory viral infections. Here, we briefly review the composition, antiviral properties, and potential therapeutic applications of pulmonary surfactant lipids in respiratory viral infections.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Lipids/therapeutic use , Lung/drug effects , Pulmonary Surfactants/therapeutic use , SARS-CoV-2/pathogenicity , Animals , Antiviral Agents/adverse effects , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions , Humans , Lipids/adverse effects , Lung/immunology , Lung/virology , Pulmonary Surfactants/adverse effects , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...