Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
2.
Int J Environ Res Public Health ; 20(1)2022 12 21.
Article in English | MEDLINE | ID: covidwho-2242647

ABSTRACT

Purpose: Since the prolonged sequestration management that was implemented in order to achieve lower infection and mortality rates, there has been a surge in depression worldwide. The correlation between the physical activity level and the detection rate of a depressed mood in college students should be of wide concern. A large number of studies have focused on the association between physical activity levels and a negative mood, but circadian rhythm differences seem to be strongly associated with both physical activity levels and mental illness. Therefore, this paper will examine the correlation between physical activity levels, circadian rhythm differences, and mental health levels in college students. METHODS: Data were collected through a web-based cross-sectional survey. In June and December 2022, questionnaires were administered to college students from three universities in Anhui, China. In addition to socio-demographic information, measures included the International Physical Activity Questionnaire-Short Form (IPAQ-SF), Morning and Evening Questionnaire-5 Items (MEQ-5), and Symptom Check List90 (SCL-90) scales. Correlation analysis was used to understand the relationship between physical activity and circadian rhythm differences in the three aspects of college student's mental health. RESULTS: The analysis of the data led to the conclusion that 28.4% of the 1241 college students in this survey had psychological disorders. The physical activity level of male students was higher than that of female students, but the risk of having depressive tendencies was higher in female students than in male students. There was a significant negative correlation between the physical activity level and scl-90 scores (p < 0.01), which indicates that higher physical activity levels are associated with higher mental health. Circadian rhythm differences and scl-90 scores were significantly positively correlated among college students (p < 0.01), and night-type people had a higher risk of mental illness than intermediate-type and early-morning-type people. CONCLUSIONS: During the period of closed administration due to COVID-19, school college students experienced large and high levels of negative emotional phenomena due to reduced physical activity and public health emergencies. This study showed significant correlations between both physical activity levels and circadian rhythmicity differences and the degree of mental health of college students.


Subject(s)
COVID-19 , Mental Health , Humans , Male , Female , COVID-19/epidemiology , Cross-Sectional Studies , Circadian Rhythm , Surveys and Questionnaires , China/epidemiology , Exercise , Universities , Students/psychology
3.
Mol Psychiatry ; 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2246458

ABSTRACT

An obvious consequence of the coronavirus disease (COVID-19) pandemic is the worldwide reduction in social interaction, which is associated with many adverse effects on health in humans from babies to adults. Although social development under normal or isolated environments has been studied since the 1940s, the mechanism underlying social isolation (SI)-induced brain dysfunction remains poorly understood, possibly due to the complexity of SI in humans and translational gaps in findings from animal models. Herein, we present a systematic review that focused on brain changes at the molecular, cellular, structural and functional levels induced by SI at different ages and in different animal models. SI studies in humans and animal models revealed common socioemotional and cognitive deficits caused by SI in early life and an increased occurrence of depression and anxiety induced by SI during later stages of life. Altered neurotransmission and neural circuitry as well as abnormal development and function of glial cells in specific brain regions may contribute to the abnormal emotions and behaviors induced by SI. We highlight distinct alterations in oligodendrocyte progenitor cell differentiation and oligodendrocyte maturation caused by SI in early life and later stages of life, respectively, which may affect neural circuit formation and function and result in diverse brain dysfunctions. To further bridge animal and human SI studies, we propose alternative animal models with brain structures and complex social behaviors similar to those of humans.

4.
Trends in analytical chemistry : TRAC ; 2023.
Article in English | Europe PMC | ID: covidwho-2246525

ABSTRACT

Pathogenic infection remains the primary threat to human health, such as the global COVID-19 pandemic. It is important to develop rapid, sensitive and multiplexed tools for detecting pathogens and their mutated variants, particularly the tailor-made strategies for point-of-care diagnosis allowing for use in resource-constrained settings. The rapidly evolving CRISPR/Cas systems have provided a powerful toolbox for pathogenic diagnostics via nucleic acid tests. In this review, we firstly describe the resultant promising class 2 (single, multidomain effector) and recently explored class 1 (multisubunit effector complexes) CRISPR tools. We present diverse engineering nucleic acid diagnostics based on CRISPR/Cas systems for pathogenic viruses, bacteria and fungi, and highlight the application for detecting viral variants and drug-resistant bacteria enabled by CRISPR-based mutation profiling. Finally, we discuss the challenges involved in on-site diagnostic assays and present emerging CRISPR systems and CRISPR cascade that potentially enable multiplexed and preamplification-free pathogenic diagnostics.

5.
Journal of environmental sciences (China) ; 124:712-722, 2023.
Article in English | ProQuest Central | ID: covidwho-2232516

ABSTRACT

The temporal variation of greenhouse gas concentrations in China during the COVID-19 lockdown in China is analyzed in this work using high resolution measurements of near surface △CO2, △CH4 and △CO concentrations above the background conditions at Lin'an station (LAN), a regional background station in the Yangtze River Delta region. During the pre-lockdown observational period (IOP-1), both △CO2 and △CH4 exhibited a significant increasing trend relative to the 2011-2019 climatological mean. The reduction of △CO2, △CH4 and △CO during the lockdown observational period (IOP-2) (which also coincided with the Chinese New Year Holiday) reached up to 15.0 ppm, 14.2 ppb and 146.8 ppb, respectively, and a reduction of △CO2/△CO probably due to a dramatic reduction from industrial emissions. △CO2, △CH4 and △CO were observed to keep declining during the post-lockdown easing phase (IOP-3), which is the synthetic result of lower than normal CO2 emissions from rural regions around LAN coupled with strong uptake of the terrestrial ecosystem. Interestingly, the trend reversed to gradual increase for all species during the later easing phase (IOP-4), with △CO2/△CO constantly increasing from IOP-2 to IOP-3 and finally IOP-4, consistent with recovery in industrial emissions associated with the staged resumption of economic activity. On average, △CO2 declined sharply throughout the days during IOP-2 but increased gradually throughout the days during IOP-4. The findings showcase the significant role of emission reduction in accounting for the dramatic changes in measured atmospheric △CO2 and △CH4 associated with the COVID-19 lockdown and recovery.

6.
Trends Analyt Chem ; 160: 116980, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2237219

ABSTRACT

Pathogenic infection remains the primary threat to human health, such as the global COVID-19 pandemic. It is important to develop rapid, sensitive and multiplexed tools for detecting pathogens and their mutated variants, particularly the tailor-made strategies for point-of-care diagnosis allowing for use in resource-constrained settings. The rapidly evolving CRISPR/Cas systems have provided a powerful toolbox for pathogenic diagnostics via nucleic acid tests. In this review, we firstly describe the resultant promising class 2 (single, multidomain effector) and recently explored class 1 (multisubunit effector complexes) CRISPR tools. We present diverse engineering nucleic acid diagnostics based on CRISPR/Cas systems for pathogenic viruses, bacteria and fungi, and highlight the application for detecting viral variants and drug-resistant bacteria enabled by CRISPR-based mutation profiling. Finally, we discuss the challenges involved in on-site diagnostic assays and present emerging CRISPR systems and CRISPR cascade that potentially enable multiplexed and preamplification-free pathogenic diagnostics.

7.
J Virol ; 97(2): e0003523, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2228038

ABSTRACT

Asp-Glu-Ala-Asp (DEAD) box helicase 3 X-linked (DDX3X) plays important regulatory roles in the replication of many viruses. However, the role of DDX3X in rhabdovirus replication has seldomly been investigated. In this study, snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus, was used to study the role of DDX3X in rhabdovirus replication. DDX3X was identified as an interacting partner of SHVV phosphoprotein (P). The expression level of DDX3X was increased at an early stage of SHVV infection and then decreased to a normal level at a later infection stage. Overexpression of DDX3X promoted, while knockdown of DDX3X using specific small interfering RNAs (siRNAs) suppressed, SHVV replication, indicating that DDX3X was a proviral factor for SHVV replication. The N-terminal and core domains of DDX3X (DDX3X-N and DDX3X-Core) were determined to be the regions responsible for its interaction with SHVV P. Overexpression of DDX3X-Core suppressed SHVV replication by competitively disrupting the interaction between full-length DDX3X and SHVV P, suggesting that full-length DDX3X-P interaction was required for SHVV replication. Mechanistically, DDX3X-mediated promotion of SHVV replication was due not to inhibition of interferon expression but to maintenance of the stability of SHVV P to avoid autophagy-lysosome-dependent degradation. Collectively, our data suggest that DDX3X is hijacked by SHVV P to ensure effective replication of SHVV, which suggests an important anti-SHVV target. This study will help elucidate the role of DDX3X in regulating the replication of rhabdoviruses. IMPORTANCE Growing evidence has suggested that DDX3X plays important roles in virus replication. In one respect, DDX3X inhibits the replication of viruses, including hepatitis B virus, influenza A virus, Newcastle disease virus, duck Tembusu virus, and red-spotted grouper nervous necrosis virus. In another respect, DDX3X is required for the replication of viruses, including hepatitis C virus, Japanese encephalitis virus, West Nile virus, murine norovirus, herpes simplex virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Because DDX3X has rarely been investigated in rhabdovirus replication, this study aimed at investigating the role of DDX3X in rhabdovirus replication by using the fish rhabdovirus SHVV as a model. We found that DDX3X was required for SHVV replication, with the mechanism that DDX3X interacts with and maintains the stability of SHVV phosphoprotein. Our data provide novel insights into the role of DDX3X in virus replication and will facilitate the design of antiviral drugs against rhabdovirus infection.


Subject(s)
DEAD-box RNA Helicases , Perciformes , Phosphoproteins , Vesiculovirus , Virus Replication , Animals , DEAD-box RNA Helicases/genetics , Fishes , Perciformes/virology , RNA, Small Interfering , Vesiculovirus/pathogenicity , Vesiculovirus/physiology , Viral Proteins
8.
Clin Rev Allergy Immunol ; 2021 Sep 18.
Article in English | MEDLINE | ID: covidwho-2228859

ABSTRACT

In December 2019, the COVID-19 pandemic quickly spread throughout China and beyond, posing enormous global challenges. With prompt, vigorous, and coordinated control measures, mainland China contained the spread of the epidemic within two months and halted the epidemic in three months. Aggressive containment strategy, hierarchical management, rational reallocation of resources, efficient contact tracing, and voluntary cooperation of Chinese citizens contributed to the rapid and efficient control of the epidemic, thus promoting the rapid recovery of the Chinese economy. This review summarizes China's prevention and control strategies and other public health measures, which may provide a reference for the epidemic control in other countries.

10.
Cell Discov ; 8(1): 131, 2022 Dec 09.
Article in English | MEDLINE | ID: covidwho-2160195

ABSTRACT

The immunity of patients who recover from coronavirus disease 2019 (COVID-19) could be long lasting but persist at a lower level. Thus, recovered patients still need to be vaccinated to prevent reinfection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or its mutated variants. Here, we report that the inactivated COVID-19 vaccine can stimulate immunity in recovered patients to maintain high levels of anti-receptor-binding domain (RBD) and anti-nucleocapsid protein (NP) antibody titers within 9 months, and high neutralizing activity against the prototype, Delta, and Omicron strains was observed. Nevertheless, the antibody response decreased over time, and the Omicron variant exhibited more pronounced resistance to neutralization than the prototype and Delta strains. Moreover, the intensity of the SARS-CoV-2-specific CD4+ T cell response was also increased in recovered patients who received COVID-19 vaccines. Overall, the repeated antigen exposure provided by inactivated COVID-19 vaccination greatly boosted both the potency and breadth of the humoral and cellular immune responses against SARS-CoV-2, effectively protecting recovered individuals from reinfection by circulating SARS-CoV-2 and its variants.

11.
Small ; : e2206349, 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2148477

ABSTRACT

Infection classification is the key for choosing the proper treatment plans. Early determination of the causative agents is critical for disease control. Host responses analysis can detect variform and sensitive host inflammatory responses to ascertain the presence and type of the infection. However, traditional host-derived inflammatory indicators are insufficient for clinical infection classification. Fingerprints-based omic analysis has attracted increasing attention globally for analyzing the complex host systemic immune response. A single type of fingerprints is not applicable for infection classification (area under curve (AUC) of 0.550-0.617). Herein, an infection classification platform based on deep learning of dual plasma fingerprints (DPFs-DL) is developed. The DPFs with high reproducibility (coefficient of variation <15%) are obtained at low sample consumption (550 nL native plasma) using inorganic nanoparticle and organic matrix assisted laser desorption/ionization mass spectrometry. A classifier (DPFs-DL) for viral versus bacterial infection discrimination (AUC of 0.775) and coronavirus disease 2019 (COVID-2019) diagnosis (AUC of 0.917) is also built. Furthermore, a metabolic biomarker panel of two differentially regulated metabolites, which may serve as potential biomarkers for COVID-19 management (AUC of 0.677-0.883), is constructed. This study will contribute to the development of precision clinical care for infectious diseases.

12.
Mol Psychiatry ; 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2133295

ABSTRACT

An obvious consequence of the coronavirus disease (COVID-19) pandemic is the worldwide reduction in social interaction, which is associated with many adverse effects on health in humans from babies to adults. Although social development under normal or isolated environments has been studied since the 1940s, the mechanism underlying social isolation (SI)-induced brain dysfunction remains poorly understood, possibly due to the complexity of SI in humans and translational gaps in findings from animal models. Herein, we present a systematic review that focused on brain changes at the molecular, cellular, structural and functional levels induced by SI at different ages and in different animal models. SI studies in humans and animal models revealed common socioemotional and cognitive deficits caused by SI in early life and an increased occurrence of depression and anxiety induced by SI during later stages of life. Altered neurotransmission and neural circuitry as well as abnormal development and function of glial cells in specific brain regions may contribute to the abnormal emotions and behaviors induced by SI. We highlight distinct alterations in oligodendrocyte progenitor cell differentiation and oligodendrocyte maturation caused by SI in early life and later stages of life, respectively, which may affect neural circuit formation and function and result in diverse brain dysfunctions. To further bridge animal and human SI studies, we propose alternative animal models with brain structures and complex social behaviors similar to those of humans.

13.
Clin Transl Med ; 12(12): e1103, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2127659

ABSTRACT

BACKGROUND: The crosstalk between the ubiquitin-proteasome and the immune system plays an important role in the health and pathogenesis of viral infection. However, there have been few studies of ubiquitin activation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: We investigated the effect of ubiquitination on SARS-CoV-2 infection and patient prognosis by integrating published coronavirus disease 2019 (COVID-19) multi-transcriptome data and bioinformatics methods. RESULTS: The differential expression of COVID-19 samples revealed changed ubiquitination in most solid and hollow organs, and it was activated in lymphatic and other immune tissues. In addition, in the respiratory system of COVID-19 patients, the immune response was mainly focused on the alveoli, and the expression of ubiquitination reflected increasing immune infiltration. Ubiquitination stratification could significantly differentiate patients' prognosis and inflammation levels through the general transcriptional analysis of the peripheral blood of patients with COVID-19. Moreover, high ubiquitination levels were associated with a favourable prognosis, low inflammatory response, and reduced mechanical ventilation and intensive care unit. Moreover, high ubiquitination promoted a beneficial immune response while inhibiting immune damage. Finally, prognostic stratification and biomarker screening based on ubiquitination traits played an important role in clinical management and drug development. CONCLUSION: Ubiquitination characteristics provides new ideas for clinical intervention and prognostic guidance for COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Ubiquitination/genetics , Ubiquitin , Proteasome Endopeptidase Complex
15.
Nucleic Acids Res ; 50(20): 11755-11774, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2103098

ABSTRACT

Mitochondrial translation is of high significance for cellular energy homeostasis. Aminoacyl-tRNA synthetases (aaRSs) are crucial translational components. Mitochondrial aaRS variants cause various human diseases. However, the pathogenesis of the vast majority of these diseases remains unknown. Here, we identified two novel SARS2 (encoding mitochondrial seryl-tRNA synthetase) variants that cause a multisystem disorder. c.654-14T > A mutation induced mRNA mis-splicing, generating a peptide insertion in the active site; c.1519dupC swapped a critical tRNA-binding motif in the C-terminus due to stop codon readthrough. Both mutants exhibited severely diminished tRNA binding and aminoacylation capacities. A marked reduction in mitochondrial tRNASer(AGY) was observed due to RNA degradation in patient-derived induced pluripotent stem cells (iPSCs), causing impaired translation and comprehensive mitochondrial function deficiencies. These impairments were efficiently rescued by wild-type SARS2 overexpression. Either mutation caused early embryonic fatality in mice. Heterozygous mice displayed reduced muscle tissue-specific levels of tRNASers. Our findings elucidated the biochemical and cellular consequences of impaired translation mediated by SARS2, suggesting that reduced abundance of tRNASer(AGY) is a key determinant for development of SARS2-related diseases.


Subject(s)
Amino Acyl-tRNA Synthetases , COVID-19 , Serine-tRNA Ligase , Humans , Mice , Animals , RNA, Transfer, Ser/genetics , Serine-tRNA Ligase/genetics , Serine-tRNA Ligase/metabolism , Amino Acyl-tRNA Synthetases/genetics , Aminoacylation
16.
Front Surg ; 9: 994536, 2022.
Article in English | MEDLINE | ID: covidwho-2089959

ABSTRACT

Background: Traumatic spinal cord injuries (TSCIs) are worldwide public health problems that are difficult to cure and impose a substantial economic burden on society. There has been a lack of extensive multicenter review of TSCI epidemiology in northwest China during the Corona Virus Disease 2019 (COVID-19) pandemic. Method: A multicenter retrospective study of 14 selected hospitals in two provinces in northwest China was conducted on patients admitted for TSCI between 2017 and 2020. Variables assessed included patient demographics, etiology, segmental distribution, treatment, waiting time for treatment, and outcomes. Results: The number of patients with TSCI showed an increasing trend from 2017 to 2019, while there were 12.8% fewer patients in 2020 than in 2019. The male-to-female ratio was 3.67:1, and the mean age was 48 ± 14.9 years. The primary cause of TSCI was high falls (38.8%), slip falls/low falls (27.7%), traffic accidents (23.9%), sports (2.6%), and other factors (7.0%). The segmental distribution showed a bimodal pattern, peak segments were C6 and L1 vertebra, L1 (14.7%), T12 (8.2%), and C6 (8.2%) were the most frequently injured segments. In terms of severity, incomplete injury (72.8%) occurred more often than complete injury (27.2%). The American Spinal Injury Association impairment scale of most patients did not convert before and after treatment in the operational group (71.6%) or the conservative group (80.6%). A total of 975 patients (37.2%) from urban and 1,646 patients (62.8%) from rural areas were included; almost all urban residents could rush to get treatment after being injured immediately (<1 h), whereas most rural patients get the treatment needed 4-7 h after injury. The rough annual incidence from 2017 to 2020 is 112.4, 143.4, 152.2, and 132.6 per million people, calculated by the coverage rate of the population of the sampling hospital. Conclusion: The incidence of TSCI in northwest China is high and on the rise. However, due to pandemic policy reasons, the incidence of urban residents decreased in 2020. The promotion of online work may be an effective primary prevention measure for traumatic diseases. Also, because of the further distance from the good conditional hospital, rural patients need to spend more time there, and the timely treatment of patients from remote areas should be paid attention to.

17.
Arch Microbiol ; 204(10): 622, 2022 Sep 14.
Article in English | MEDLINE | ID: covidwho-2027455

ABSTRACT

The sudden emergence of the SARS-CoV-2 Omicron variant is causing major global concern due to its high number of mutations compared to previous variants, which is a relatively rare but significant event that can change the course of viral evolution, the occurrence of which might have huge consequences for the natural evolution of species in general, prompting us to rethink our knowledge on evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , SARS-CoV-2/genetics
18.
J Med Chem ; 65(17): 11840-11853, 2022 09 08.
Article in English | MEDLINE | ID: covidwho-2016520

ABSTRACT

Site-selective lysine modification of peptides and proteins in aqueous solutions or in living cells is still a big challenge today. Here, we report a novel strategy to selectively quinolylate lysine residues of peptides and proteins under native conditions without any catalysts using our newly developed water-soluble zoliniums. The zoliniums could site-selectively quinolylate K350 of bovine serum albumin and inactivate SARS-CoV-2 3CLpro via covalently modifying two highly conserved lysine residues (K5 and K61). In living HepG2 cells, it was demonstrated that the simple zoliniums (5b and 5B) could quinolylate protein lysine residues mainly in the nucleus, cytosol, and cytoplasm, while the zolinium-fluorophore hybrid (8) showed specific lysosome-imaging ability. The specific chemoselectivity of the zoliniums for lysine was validated by a mixture of eight different amino acids, different peptides bearing potential reactive residues, and quantum chemistry calculations. This study offers a new way to design and develop lysine-targeted covalent ligands for specific application.


Subject(s)
Lysine , Peptides , Coronavirus 3C Proteases/chemistry , Lysine/chemistry , Peptides/chemistry , SARS-CoV-2/enzymology , Serum Albumin, Bovine/chemistry , Water/chemistry
19.
Nat Biomed Eng ; 6(8): 957-967, 2022 08.
Article in English | MEDLINE | ID: covidwho-1931410

ABSTRACT

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for versatile diagnostic assays that can discriminate among emerging variants of the virus. Here we report the development and performance benchmarking of an inexpensive (approximately US$0.30 per test) assay for the rapid (sample-to-answer time within 30 min) colorimetric detection of SARS-CoV-2 variants. The assay, which we integrated into foldable paper strips, leverages nucleic acid strand-displacement reactions, the thermodynamic energy penalty associated with single-base-pair mismatches and the metal-ion-controlled enzymatic cleavage of urea to amplify the recognition of viral RNAs for the colorimetric readout of changes in pH via a smartphone. For 50 throat swab samples, the assay simultaneously detected the presence of SARS-CoV-2 and mutations specific to the SARS-CoV-2 variants Alpha, Beta and Gamma, with 100% concordance with real-time quantitative polymerase chain reaction and RNA sequencing. Customizable and inexpensive paper-based assays for the detection of viruses and their variants may facilitate viral surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Colorimetry , Humans , Nucleotides , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL