Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Signal Transduct Target Ther ; 6(1): 369, 2021 10 25.
Article in English | MEDLINE | ID: covidwho-1483125

ABSTRACT

The lung is the prophylaxis target against SARS-CoV-2 infection, and neutralizing antibodies are a leading class of biological products against various infectious viral pathogen. In this study, we develop a safe and cost-effective platform to express neutralizing antibody in the lung with replicating mRNA basing on alphavirus replicon particle (VRP) delivery system, to prevent SARS-CoV-2 infections. First, a modified VEEV replicon with two subgenomic (sg) promoters was engineered to translate the light and heavy chains of antibody simultaneously, for expression and assembly of neutralizing anti-SARS-CoV-2 antibody CB6. Second, the feasibility and protective efficacy of replicating mRNA against SARS-CoV-2 infection were demonstrated through both in vitro and in vivo assays. The lung target delivery with the help of VRP system resulted in efficiently block SARS-CoV-2 infection with reducing viral titer and less tissue damage in the lung of mice. Overall, our data suggests that expressing neutralizing antibodies in the lungs with the help of self-replicating mRNA could potentially be a promising prophylaxis approach against SARS-CoV-2 infection.


Subject(s)
Alphavirus , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Replicon , SARS-CoV-2/metabolism , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/genetics , Antibodies, Viral/biosynthesis , Antibodies, Viral/genetics , COVID-19/genetics , COVID-19/metabolism , Chlorocebus aethiops , Cricetinae , Female , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2/genetics , Vero Cells
2.
Signal Transduct Target Ther ; 6(1): 315, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1442755

ABSTRACT

The evolution of coronaviruses, such as SARS-CoV-2, makes broad-spectrum coronavirus preventional or therapeutical strategies highly sought after. Here we report a human angiotensin-converting enzyme 2 (ACE2)-targeting monoclonal antibody, 3E8, blocked the S1-subunits and pseudo-typed virus constructs from multiple coronaviruses including SARS-CoV-2, SARS-CoV-2 mutant variants (SARS-CoV-2-D614G, B.1.1.7, B.1.351, B.1.617.1, and P.1), SARS-CoV and HCoV-NL63, without markedly affecting the physiological activities of ACE2 or causing severe toxicity in ACE2 "knock-in" mice. 3E8 also blocked live SARS-CoV-2 infection in vitro and in a prophylactic mouse model of COVID-19. Cryo-EM and "alanine walk" studies revealed the key binding residues on ACE2 interacting with the CDR3 domain of 3E8 heavy chain. Although full evaluation of safety in non-human primates is necessary before clinical development of 3E8, we provided a potentially potent and "broad-spectrum" management strategy against all coronaviruses that utilize ACE2 as entry receptors and disclosed an anti-coronavirus epitope on human ACE2.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antibodies, Monoclonal, Murine-Derived/pharmacology , Antiviral Agents/pharmacology , COVID-19/drug therapy , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Monoclonal, Murine-Derived/immunology , Antiviral Agents/immunology , Chlorocebus aethiops , Disease Models, Animal , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Transgenic , Vero Cells
3.
Signal Transduct Target Ther ; 5(1): 218, 2020 10 03.
Article in English | MEDLINE | ID: covidwho-1387198

Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Cardiac Glycosides/pharmacology , Gene Expression Regulation/drug effects , Host-Pathogen Interactions/drug effects , Animals , Antiviral Agents/chemistry , Betacoronavirus/pathogenicity , Biological Products/chemistry , Biological Products/pharmacology , Bufanolides/chemistry , Bufanolides/pharmacology , COVID-19 , Cardiac Glycosides/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Chloroquine/chemistry , Chloroquine/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Digoxin/chemistry , Digoxin/pharmacology , High-Throughput Screening Assays , Host-Pathogen Interactions/genetics , Humans , Janus Kinases/antagonists & inhibitors , Janus Kinases/genetics , Janus Kinases/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/metabolism , Pandemics , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Signal Transduction , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Vero Cells , Virus Replication/drug effects
6.
Emerg Microbes Infect ; 9(1): 1170-1173, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-324574

ABSTRACT

The emerging SARS-CoV-2 infection associated with the outbreak of viral pneumonia in China is ongoing worldwide. There are no approved antiviral therapies to treat this viral disease. Here we examined the antiviral abilities of three broad-spectrum antiviral compounds gemcitabine, lycorine and oxysophoridine against SARS-CoV-2 in cell culture. We found that all three tested compounds inhibited viral replication in Vero-E6 cells at noncytotoxic concentrations. The antiviral effect of gemcitabine was suppressed efficiently by the cytidine nucleosides. Additionally, combination of gemcitabine with oxysophoridine had an additive antiviral effect against SARS-CoV-2. Our results demonstrate that broad-spectrum antiviral compounds may have a priority for the screening of antiviral compounds against newly emerging viruses to control viral infection.


Subject(s)
Alkaloids/pharmacology , Amaryllidaceae Alkaloids/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Deoxycytidine/analogs & derivatives , Phenanthridines/pharmacology , Virus Replication/drug effects , Animals , Betacoronavirus/growth & development , Betacoronavirus/metabolism , Cell Survival/drug effects , Chlorocebus aethiops , Chloroquine/pharmacology , Deoxycytidine/pharmacology , Dose-Response Relationship, Drug , Drug Combinations , Drug Synergism , SARS-CoV-2 , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...